Mechanism of action of a major folate enzyme
主要叶酸酶的作用机制
基本信息
- 批准号:8013378
- 负责人:
- 金额:$ 9.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-08 至 2011-02-07
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAntibodiesApoptosisBacteriaBiogenesisBiologicalBiological AssayCancerousCell Culture TechniquesCell LineCell ProliferationCell physiologyCellsChromosomesCongenital AbnormalityCytosolDataDiseaseEnzymesFolateFolate Biosynthesis PathwayFormatesFormyltetrahydrofolatesGenesGoalsGrantHumanHydrolaseLiverMalignant NeoplasmsMammalian CellMeasurementMegaloblastic AnemiaMetabolicMethodsMitochondriaMitochondrial ProteinsModelingMolecular ProfilingNeural tubeNucleotidesOxidoreductasePreventionProductionProtein BiosynthesisProtein Biosynthesis PathwayProteinsPurine AntagonistPurinesReactionRegulationResearch PersonnelRoleSmall Interfering RNASupplementationTechniquesTestingTetrahydrofolatesTissuesTransfer RNATranslation InitiationTumor Suppressor ProteinsVascular Diseasesbasecancer cellenzyme activityfolic acid metabolismhuman tissuein vivoinhibitor/antagonistmutantprogramsprotein expressionpurinetumor
项目摘要
DESCRIPTION (provided by applicant): The broad objectives of this proposal are to understand the metabolic role of one of the most abundant folate enzymes, FDH. FDH converts 10-formyltetrahydrofolate (10-fTHF) to tetrahydrofolate in an NADP-dependent dehydrogenase reaction or in an NADP-independent hydrolase reaction. Our recent studies have demonstrated that FDH possesses tumor suppressor-like activity: it is strongly and ubiquitously down regulated in tumors and induces apoptosis in FDH-deficient cancer cells. Therefore, we proposed that the enzyme is one of the intrinsic mechanisms that protect against excessive and uncontrolled cellular proliferation. Since the FDH substrate, 10-fTHF, formylates methionyl-tRNA, presumably a required step in initiation of translation in mitochondria, we propose that FDH regulates protein biosynthesis in mitochondria through the control of intracellular 10-fTHF levels. We further hypothesize that the product of the FLJ38508 gene (locus 12q23.3) is a mitochondria! FDH, and that the cytosolic and mitochondria! enzymes regulate distribution of 10-fTHF between cytosolic and mitochondrial compartments directing 10-fTHF to the de novo purine biosynthesis or mitochondrial protein biosynthesis pathway. We also propose that FDH hydrolase reaction occurs in vivo in mitochondria and that the biological role of this reaction is to supply formate for biosynthesis of 10-fTHF in cytosol. The following specific aims are proposed to test the hypotheses. (1) Manipulate the levels of 10-fTHF, through FDH expression, to establish its importance in control of protein biosynthesis in mitochondria. (2) Explore the role of the mitochondrial FDH in cellular function. (3) Investigate whether FDH- catalyzed 10-fTHF hydrolase reaction occurs in vivo. Cultured mammalian cells with different supplementation of folate and purines will be used as a model in this proposal. FDH expression in mammalian cells, measurement of folate and nucleotide pools, analysis of folate enzymes, assays of ATP production and protein expression in mitochondria, assays of apoptosis and mitochondrial integrity, enzyme activity assays, immunochemical methods, siRNA techniques will be used to achieve the goals of the project. The well-known role of folate in prevention of megaloblastic anemia, vascular disease, neural tube birth defects and cancer, as well as crucial role of mitochondria in regulation of apoptosis, and growing body of evidence for mitochondrial basis of many diseases make these studies particularly relevant.
描述(由申请人提供):该提案的主要目标是了解最丰富的叶酸酶之一 FDH 的代谢作用。 FDH 在 NADP 依赖性脱氢酶反应或不依赖 NADP 的水解酶反应中将 10-甲酰四氢叶酸 (10-fTHF) 转化为四氢叶酸。我们最近的研究表明,FDH 具有肿瘤抑制样活性:它在肿瘤中强烈且普遍地下调,并诱导 FDH 缺陷的癌细胞凋亡。因此,我们认为该酶是防止过度和不受控制的细胞增殖的内在机制之一。由于FDH底物10-fTHF甲酰化甲硫氨酰-tRNA,这可能是线粒体翻译起始所需的步骤,因此我们提出FDH通过控制细胞内10-fTHF水平来调节线粒体中的蛋白质生物合成。我们进一步假设FLJ38508基因(基因座12q23.3)的产物是线粒体! FDH,还有细胞质和线粒体!酶调节 10-fTHF 在胞质和线粒体区室之间的分布,将 10-fTHF 引导至从头嘌呤生物合成或线粒体蛋白质生物合成途径。我们还提出FDH水解酶反应发生在体内线粒体中,并且该反应的生物学作用是为细胞质中10-fTHF的生物合成提供甲酸盐。提出以下具体目标来检验假设。 (1) 通过 FDH 表达操纵 10-fTHF 的水平,以确定其在控制线粒体蛋白质生物合成中的重要性。 (2)探讨线粒体FDH在细胞功能中的作用。 (3)研究体内是否发生FDH催化的10-fTHF水解酶反应。本提案将使用添加不同叶酸和嘌呤的培养哺乳动物细胞作为模型。哺乳动物细胞中的 FDH 表达、叶酸和核苷酸池的测量、叶酸酶的分析、线粒体中 ATP 产生和蛋白质表达的测定、细胞凋亡和线粒体完整性的测定、酶活性测定、免疫化学方法、siRNA 技术将用于实现项目的目标。叶酸在预防巨幼细胞性贫血、血管疾病、神经管出生缺陷和癌症方面的众所周知的作用,以及线粒体在细胞凋亡调节中的关键作用,以及越来越多的证据表明许多疾病的线粒体基础,使得这些研究特别重要相关的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGEY A KRUPENKO其他文献
SERGEY A KRUPENKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGEY A KRUPENKO', 18)}}的其他基金
Mechanistic and metabolomic underpinnings of ALDH1L1 polymorphisms in the regulation of glycine metabolism
ALDH1L1 多态性调节甘氨酸代谢的机制和代谢组学基础
- 批准号:
10870688 - 财政年份:2021
- 资助金额:
$ 9.65万 - 项目类别:
Mechanistic and metabolomic underpinnings of ALDH1L1 polymorphisms in the regulation of glycine metabolism
ALDH1L1 多态性调节甘氨酸代谢的机制和代谢组学基础
- 批准号:
10297073 - 财政年份:2021
- 资助金额:
$ 9.65万 - 项目类别:
Mechanistic and metabolomic underpinnings of ALDH1L1 polymorphisms in the regulation of glycine metabolism
ALDH1L1 多态性调节甘氨酸代谢的机制和代谢组学基础
- 批准号:
10297073 - 财政年份:2021
- 资助金额:
$ 9.65万 - 项目类别:
Mechanistic and metabolomic underpinnings of ALDH1L1 polymorphisms in the regulation of glycine metabolism
ALDH1L1 多态性调节甘氨酸代谢的机制和代谢组学基础
- 批准号:
10663183 - 财政年份:2021
- 资助金额:
$ 9.65万 - 项目类别:
Mechanistic and metabolomic underpinnings of ALDH1L1 polymorphisms in the regulation of glycine metabolism
ALDH1L1 多态性调节甘氨酸代谢的机制和代谢组学基础
- 批准号:
10453683 - 财政年份:2021
- 资助金额:
$ 9.65万 - 项目类别:
Regulation of mitochondrial function by folate enzyme ALDH1L2 in health and disease
叶酸酶 ALDH1L2 在健康和疾病中对线粒体功能的调节
- 批准号:
10372093 - 财政年份:2019
- 资助金额:
$ 9.65万 - 项目类别:
Regulation of mitochondrial function by folate enzyme ALDH1L2 in health and disease
叶酸酶 ALDH1L2 在健康和疾病中对线粒体功能的调节
- 批准号:
10597021 - 财政年份:2019
- 资助金额:
$ 9.65万 - 项目类别:
Regulation of mitochondrial function by folate enzyme ALDH1L2 in health and disease
叶酸酶 ALDH1L2 在健康和疾病中对线粒体功能的调节
- 批准号:
10117233 - 财政年份:2019
- 资助金额:
$ 9.65万 - 项目类别:
相似国自然基金
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
- 批准号:22378166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醛固酮瘤丙酸代谢异常通过MMA-肥大细胞-5-羟色胺-PCCA环路促进醛固酮合成的机制研究
- 批准号:82300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 9.65万 - 项目类别:
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 9.65万 - 项目类别:
BMP-dependent pathways and Alzheimer's disease
BMP 依赖性途径与阿尔茨海默氏病
- 批准号:
10511117 - 财政年份:2022
- 资助金额:
$ 9.65万 - 项目类别:
Pathogenicity of the emerging pathogen Kingella kingae
新出现的病原体金氏菌的致病性
- 批准号:
10559927 - 财政年份:2022
- 资助金额:
$ 9.65万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10615187 - 财政年份:2022
- 资助金额:
$ 9.65万 - 项目类别: