Targeted microcarrier design and optimization
靶向微载体设计和优化
基本信息
- 批准号:7793603
- 负责人:
- 金额:$ 35.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAntibodiesArteriesBindingBloodBlood CirculationBlood VesselsBlood flowCell Culture TechniquesCell membraneCell modelCell surfaceCellsCellular MorphologyCellular StressCharacteristicsClinicalComplexComputer SimulationCouplingDiffusionDiseaseDisorder by SiteDoseDrug CarriersDrug Delivery SystemsEndothelial CellsEventExerciseExperimental DesignsExperimental ModelsGlycocalyxIn VitroInstitutesIntercellular adhesion molecule 1KineticsLateralLeadLengthLifeLigand BindingLigandsMechanicsMembraneMethodsModelingMotionNormal tissue morphologyParticle SizePathologyPennsylvaniaPharmaceutical PreparationsPhysical environmentPhysiologicalPolystyrenesProcessPropertyProtocols documentationRegulationResearch PersonnelRheologySiteStreamStructureSurfaceSystemTechnologyTestingTherapeuticTimeTissuesToxic effectTranslationsTreatment EfficacyTubeUniversitiesVeinsWorkbaseblood rheologycell fixingcell motilitydensitydesignengineering designimprovedin vivomulti-scale modelingnanocarriernanoscaleparticleprophylacticprototypereceptorreceptor densityreceptor expressionresearch studyresponseshear stresssuccesstargeted deliverytechnology developmenttherapeutic targettranslational medicine
项目摘要
DESCRIPTION (provided by applicant): A strategic approach to improve the treatment of many diseases is to package a drug into carrier particles and then target that drug carrier for bloodstream delivery directly to the diseased tissue. Benefits of this approach include the possibility of an increase in the dose of the drug reaching diseased tissue (enhanced therapeutic efficacy) and a concomitant decrease in the dose of drug reaching normal tissue (reduced toxicity). Success of this approach relies in part on the development of technologies and clinical methods for injecting functionalized, targeted drug carriers into the blood stream close to the disease tissue. Success is directly dependent on the design and manufacture of carrier particles that have specific features such as particle size and surface coverage with binding molecules specific to the diseases being treated that lead to the desired, and necessary, initial event: binding of the carrier particle to endothelial cells in blood vessels within the diseased tissue. The complex interplay between targeted nanocarrier motion in flow, biomolecular receptor- ligand interactions governing specific binding, and thermal/transport dynamics of receptors on the cell membrane, is inherently a multiscale problem. The physical environment for binding ultimately defines the efficacy of nanocarrier arrest on the target cell. The nanocarrier binding and arrest are influenced by hydrodynamic forces resulting from blood flow, expression-levels of specific target determinants on the cell surface, their lateral diffusion on the membrane, the presence or absence of a glycocalyx, and membrane mobility. We hypothesize that experimental and design parameters such as receptor density on nanocarriers, carrier size, and binding response to flow characteristics such as shear stress levels can be optimized for enhancing the targeting the nanocarriers to specific (stressed) cells. To test this hypothesis, we propose four specific aims: 1) develop a spatially resolved stochastic multiscale model for predicting the energetic and kinetics of targeted spherical nanocarriers binding to endothelial cells; 2) experimentally quantify the kinetics of binding for ligand functionalized nanocarriers of varying size to fixed cells under static and shear conditions; 3) experimentally quantify the kinetics of binding for ligand functionalized nanocarriers of varying size to live cells under static and shear conditions and 4) extend the model in Aim 1 to a) include additional effects on binding due to membrane mobility, lateral diffusion of receptors and the mechano/hydrodynamic barrier posed by the glycocalyx in live cells; b) include effects of RBC-nanocarrier interactions and non-Newtonian rheology. We will develop a synergistic modeling and experimental platform for accessing and bridging the multiple length and time scales relevant for vascular delivery of targeted nanocarriers. Our objectives of quantitatively characterizing and predicting the transient nanoscale binding mechanics and dynamics for spherical nanocarrier binding to fixed and live endothelial cells under shear flow as a function of the various experimentally tunable parameters will lead to improvements in therapeutics for many diseases. A strategic approach to improve the treatment of many diseases is to package a drug into carrier particles and then target that drug carrier for bloodstream delivery directly to the diseased tissue. We will develop a synergistic experimental and computational platform addressing bloodstream delivery of targeted nanocarriers. This work to characterize quantitatively and predict computationally the binding mechanics and dynamics for nanocarrier binding to endothelial cells will lead to improvements in therapeutics for many diseases.
描述(由申请人提供):改善许多疾病治疗的一种战略方法是将药物包装到载体颗粒中,然后将药物载体靶向血流直接输送到患病组织。这种方法的好处包括可以增加到达患病组织的药物剂量(增强治疗效果),并同时减少到达正常组织的药物剂量(降低毒性)。这种方法的成功部分依赖于将功能化的靶向药物载体注射到靠近疾病组织的血流中的技术和临床方法的开发。成功直接取决于载体颗粒的设计和制造,这些颗粒具有特定的特征,例如颗粒大小和表面覆盖度,以及与所治疗疾病特异性的结合分子,从而导致所需的、必要的初始事件:载体颗粒与病变组织内血管中的内皮细胞。流动中的目标纳米载体运动、控制特异性结合的生物分子受体-配体相互作用以及细胞膜上受体的热/运输动力学之间复杂的相互作用本质上是一个多尺度问题。结合的物理环境最终决定了纳米载体对靶细胞的阻滞效果。纳米载体的结合和停滞受到血流产生的流体动力、细胞表面上特定目标决定簇的表达水平、它们在膜上的横向扩散、糖萼的存在或不存在以及膜迁移性的影响。我们假设可以优化实验和设计参数,例如纳米载体上的受体密度、载体尺寸以及对流动特性(例如剪切应力水平)的结合响应,以增强纳米载体对特定(应激)细胞的靶向性。为了检验这一假设,我们提出了四个具体目标:1)开发空间分辨随机多尺度模型,用于预测与内皮细胞结合的靶向球形纳米载体的能量和动力学; 2) 通过实验量化不同尺寸的配体功能化纳米载体在静态和剪切条件下与固定细胞的结合动力学; 3) 通过实验量化不同尺寸的配体功能化纳米载体在静态和剪切条件下与活细胞的结合动力学,4) 将目标 1 中的模型扩展到 a) 包括由于膜迁移性、受体的横向扩散和活细胞中糖萼构成的机械/流体动力学屏障; b) 包括红细胞-纳米载体相互作用和非牛顿流变学的影响。我们将开发一个协同建模和实验平台,用于访问和桥接与目标纳米载体的血管递送相关的多个长度和时间尺度。我们的目标是定量表征和预测球形纳米载体在剪切流下与固定和活内皮细胞结合的瞬时纳米级结合力学和动力学,作为各种实验可调参数的函数,这将导致许多疾病的治疗方法的改进。改善许多疾病治疗的一种战略方法是将药物包装到载体颗粒中,然后将药物载体靶向血液直接输送到患病组织。我们将开发一个协同实验和计算平台,解决目标纳米载体的血流输送问题。这项定量表征并计算预测纳米载体与内皮细胞结合的结合力学和动力学的工作将导致许多疾病的治疗方法的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M ECKMANN其他文献
DAVID M ECKMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M ECKMANN', 18)}}的其他基金
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9282740 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9067407 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
8795021 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9476336 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Bridging multiple scales in modeling targeted drug nanocarrier delivery
在靶向药物纳米载体输送建模中桥接多个尺度
- 批准号:
8723200 - 财政年份:2013
- 资助金额:
$ 35.08万 - 项目类别:
Bridging multiple scales in modeling targeted drug nanocarrier delivery
在靶向药物纳米载体输送建模中桥接多个尺度
- 批准号:
8554530 - 财政年份:2013
- 资助金额:
$ 35.08万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
- 批准号:
10831206 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Class II Human Leukocyte Antigen biologics for antibody-mediated graft rejection.
用于抗体介导的移植物排斥反应的 II 类人类白细胞抗原生物制剂。
- 批准号:
10598931 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Individualized Immunosuppression for Kidney Transplant Recipients
肾移植受者的个体化免疫抑制
- 批准号:
10664609 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Maturation of human humoral immunity through repeat malaria challenges
通过重复疟疾挑战使人体体液免疫成熟
- 批准号:
10720245 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别: