Controlling chondrocyte matrix degradation and repair in 3-D culture.
控制 3D 培养中的软骨细胞基质降解和修复。
基本信息
- 批准号:7807636
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdherent CultureAdultAffectAlginatesAmericanApoptosisArthritisBiocompatibleCartilageCartilage injuryCattleCellsChemicalsChondrocytesCollagenDataDefectDegenerative polyarthritisDepositionDevelopmentDimensionsDiseaseDoseElementsEmbryoEngineeringEnvironmental Risk FactorEventExtracellular MatrixGene TargetingGenerationsGenesGeneticGenetic DeterminismGenetic ProgrammingGlycosaminoglycansGoalsGrowthHarvestHypertrophyImageIn VitroInflammatoryInjuryKnock-outKnockout MiceKnowledgeLaboratoriesMAP Kinase GeneMAP2K6 geneMAPK14 geneMAPK8 geneMAPK9 geneMEKsMechanicsMentorsMethodsMicroscopyMissionModelingMusMutationNF-kappa BNFKB Signaling PathwayNational Institute of Arthritis and Musculoskeletal and Skin DiseasesOperative Surgical ProceduresPathway interactionsPeptide HydrolasesPharmacologic SubstancePhenotypePopulationProceduresProcessProductionPropertyProteoglycanRelative (related person)ResearchSignal PathwaySignal TransductionSolutionsStressStructureSystemTechniquesThinkingTimeTissue EngineeringTissuesTrainingTransgenic OrganismsTraumaTumor Necrosis Factor-alphaUnited States National Institutes of HealthWeight-Bearing stateaggrecanarticular cartilagebasecareercartilage developmentcartilage repaircrosslinkexperiencegene therapyhuman TNF proteinin vitro Modelknockout genemathematical modelmultidisciplinarynovelosteochondral repairosteochondral tissueprogramsrepairedresponsescaffoldsecond harmonicskillstooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): This proposal's long-term objectives are: 1) to provide basic knowledge about how manipulation of Inflammatory signaling pathways can affect the mechanical properties of chondrocyte created neo-matrix, and 2) to create a tissue-engineered surgical solution to restore osteochondral defects. These objectives will be through two specific aims: construction and analysis of tissue-engineered cartilage using 1) genetically-modified mouse chondrocytes with knockout of MKK/MEK3; and 2) pharmacologic inhibition of key signaling pathways (p38 and JNK MARK) that regulate proteoglycan and collagen deposition by chondrocytes in tissue-engineered cartilage. Analysis will encompass mechanical characterization, collagen, crosslink, and GAG content, multiphoton microscopy, and mathematical modeling of the tissue. The goals of this proposal are relevant to the mission of the NIH and NIAMS. Functional engineered cartilage would greatly alleviate cartilage damage which affects ~10% of the population (1). Information gained about the genetic determinants of cartilage neo-matrix formation would increase understanding of cartilage degradation in rheumatoid and osteoarthritis. This proposal has tissue engineering, multiphoton imaging, and mathematical modeling components, and is a multidisciplinary effort to advance basic knowledge of chondrocyte genetic programming in disease and repair processes. Chondrocytes from mice with knockouts and mutations of TNF-alpha and IL-1beta signaling elements will be harvested and seeded within alginate scaffolds to allow neo-matrix development. Tissue mechanical properties, collagen, proteoglycan, and crosslink content will be assessed during culture under normal and transgenic phenotype, and with or without pharmacologic inhibition of the same signaling pathways, known to affect extracellular matrix production (2). Multiphoton imaging will be used to assess collagen deposition and network structure (using signal from second harmonic generation) and collagen crosslink formation (through two-photon autofluorescence signal). Data from the tissue-engineered cartilage will be fit to a cartilage growth mixture model, previously developed to assess native cartilage (3). Every year, cartilage Injury affects nearly 1 million Americans resulting in 200,000 procedures. Injury often leads cryptically to osteoarthritis (1). Tissue-engineered cartilage is a promising method to examine chondrocyte-controlled cartilage degradation and repair. Understanding these processes in vitro would help clinicians control and repair cartilage through pharmaceutical, genetic, and surgical manipulations.
描述(由申请人提供):该提案的长期目标是:1)提供关于炎症信号通路的操纵如何影响软骨细胞创建的新基质的机械特性的基本知识,以及2)创建组织工程外科手术修复骨软骨缺损的解决方案。这些目标将通过两个具体目标实现:使用 1) 敲除 MKK/MEK3 的转基因小鼠软骨细胞构建和分析组织工程软骨; 2) 对关键信号通路(p38 和 JNK MARK)的药理学抑制,这些信号通路调节组织工程软骨中软骨细胞的蛋白聚糖和胶原蛋白沉积。分析将包括机械特性、胶原蛋白、交联和 GAG 含量、多光子显微镜和组织的数学模型。 该提案的目标与 NIH 和 NIAMS 的使命相关。功能性工程软骨将极大地减轻影响约 10% 人口的软骨损伤 (1)。获得有关软骨新基质形成的遗传决定因素的信息将增加对类风湿和骨关节炎中软骨退化的了解。该提案包含组织工程、多光子成像和数学建模组成部分,是一项多学科努力,旨在推进疾病和修复过程中软骨细胞遗传编程的基础知识。 来自具有 TNF-α 和 IL-1β 信号元件敲除和突变的小鼠的软骨细胞将被收获并接种在藻酸盐支架内,以允许新基质的发育。将在正常和转基因表型下的培养过程中评估组织机械特性、胶原蛋白、蛋白聚糖和交联含量,并在有或没有药物抑制相同信号通路(已知会影响细胞外基质产生)的情况下进行评估 (2)。多光子成像将用于评估胶原蛋白沉积和网络结构(使用二次谐波产生的信号)以及胶原蛋白交联形成(通过双光子自发荧光信号)。来自组织工程软骨的数据将适合软骨生长混合物模型,该模型之前是为评估天然软骨而开发的 (3)。 每年,软骨损伤影响近 100 万美国人,导致 20 万例手术。损伤常常会神秘地导致骨关节炎 (1)。组织工程软骨是检查软骨细胞控制的软骨退化和修复的一种有前景的方法。了解这些体外过程将有助于临床医生通过药物、遗传和外科手术控制和修复软骨。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher B Raub其他文献
Christopher B Raub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher B Raub', 18)}}的其他基金
A high throughput, in vitro screening system for treatments of oral mucositis in cancer
用于治疗癌症口腔粘膜炎的高通量体外筛选系统
- 批准号:
10041746 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
A high throughput, in vitro screening system for treatments of oral mucositis in cancer
用于治疗癌症口腔粘膜炎的高通量体外筛选系统
- 批准号:
10251272 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
A dual-modality quantitative phase and polarized light microscope to assess cell motility and extracellular matrix remodeling during invasion
双模态定量相和偏光显微镜评估侵袭过程中的细胞运动和细胞外基质重塑
- 批准号:
9924599 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Controlling chondrocyte matrix degradation and repair in 3-D culture.
控制 3D 培养中的软骨细胞基质降解和修复。
- 批准号:
8035903 - 财政年份:2010
- 资助金额:
$ 4.66万 - 项目类别:
Controlling chondrocyte matrix degradation and repair in 3-D culture.
控制 3D 培养中的软骨细胞基质降解和修复。
- 批准号:
8213730 - 财政年份:2010
- 资助金额:
$ 4.66万 - 项目类别:
Controlling chondrocyte matrix degradation and repair in 3-D culture.
控制 3D 培养中的软骨细胞基质降解和修复。
- 批准号:
8213730 - 财政年份:2010
- 资助金额:
$ 4.66万 - 项目类别:
Multiphoton Imaging and Rheology of Fibrosis Models
纤维化模型的多光子成像和流变学
- 批准号:
7407804 - 财政年份:2007
- 资助金额:
$ 4.66万 - 项目类别:
Multiphoton Imaging and Rheology of Fibrosis Models
纤维化模型的多光子成像和流变学
- 批准号:
7496521 - 财政年份:2007
- 资助金额:
$ 4.66万 - 项目类别:
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 4.66万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10522665 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
- 批准号:
10583011 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10662561 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别: