Connecting plasma membrane function to lipid structure and organization with asym
通过不对称将质膜功能与脂质结构和组织联系起来
基本信息
- 批准号:7867819
- 负责人:
- 金额:$ 28.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAutomobile DrivingBasic ScienceBehaviorBindingBiochemistryBiologicalBiological ProcessBiotechnologyCarbohydratesCell membraneCellsCellular MorphologyCellular StructuresChargeChemicalsCiliaComplexCrowdingCytoplasmDNA-Protein InteractionDataDevelopmentDiabetes MellitusDiseaseDrug Delivery SystemsDrug TransportExtracellular SpaceFluorescenceFluorescence MicroscopyGene ExpressionGenetic TranscriptionHealthHumanIndividualIntegral Membrane ProteinIonsLipid BilayersLipidsLocationMeasuresMechanicsMembraneMembrane ProteinsMicrofluidicsModelingMolecularMolecular BiologyMolecular MedicineMolecular StructureMonitorOligonucleotidesPeptidesPharmaceutical PreparationsPhosphatidylserinesPhysiological ProcessesPlayProcessPropertyProteinsResearchResistanceRoleRouteSignal TransductionSiteStructureStructure-Activity RelationshipSystemTechniquesTestingToxic Environmental SubstancesTranslationsTransmembrane DomainVesicleViralVirusannexin A5basecancer therapycell behaviordesigninterestlipid structuremolecular asymmetrynucleic acid structureparticlepassive transportprotein functionpublic health relevancereceptorresearch studyscaffoldsmall moleculesolutetool
项目摘要
DESCRIPTION (provided by applicant): Over the past half century, as molecular biology and biochemistry have developed to inform our understanding of disease, and as this understanding has driven the search for treatments in biotechnology and molecular medicine, the dominant theoretical scaffold for interpreting molecular behavior has been the structure-function relationship. Our understanding of molecular biology's structure-function relationships is largely limited, however, to the molecules of the central dogma: proteins and oligonucleotides. The vast variety of molecular structure outside of the central dogma, particularly among lipids and carbohydrates, suggests that these, too, can be understood in terms of structure driving function. In particular, there has been intense interest in the functional role that lipids might play in the plasma membrane. This project deploys a new class of synthetic lipid bilayers to begin drawing connections between the structure of lipid molecules-both in terms of individual molecular structure and supermolecular organization-and the function of the plasma membrane. The research tools developed and deployed here, called asymmetric giant unilamellar vesicles (AGUVs), are designed to uniquely mimic the cell membrane, capturing properties such as compositional asymmetry and molecular crowding better than other existing synthetic lipid bilayers. One of the many questions that AGUVs can help answer involves passive transport across the cell membrane. Passive transport is an important route for drug delivery and passage of environmental toxins into cells. Recent results show that the mechanism of this transport is complex, and highly dependent on lipid behavior. This project deploys an AGUV-based technique for systematically measuring the dynamics of solute molecules interacting with and penetrating lipid bilayers, yielding richer mechanistic data than other approaches are capable of delivering. AGUVs can also be used to study the mechanical properties of the cell membrane. These properties- particularly resistance to bending-control protein function and are important in a range of physiological processes. While synthetic lipid bilayers have been used to probe these properties, little is known about the effects of bilayer asymmetry on them. This project uses AGUVs to discover these effects. Lipid interactions with integral membrane proteins are likely a major mode by which lipids influence cell behavior. Very little is known, however, about the origins or controlling parameters of these interactions. This project begins to untangle this problem in AGUVs by using fluorescence microscopy to probe how peptides modeling the transmembrane regions of various proteins associate with segregated lipid domains. Finally, AGUVs can facilitate the systematic study of the effects of macromolecular crowding in the cell interior. The microfluidic technique by which AGUVs are formed allows for the inclusion of arbitrary molecules within them, leading to unique molecularly crowded structures.
PUBLIC HEALTH RELEVANCE: Cells are surrounded by membranes that consist of two layers of lipid molecules, and the chemical composition is different in these two layers. In this project, a new type of artificial cell membrane that is uniquely capable of mimicking this asymmetry is deployed to study a range of important biological processes, including drug transport into cells, mechanical deformation of the cell membrane, and interactions between lipid molecules and receptor proteins involved in cancer treatment and diabetes.
描述(由申请人提供):在过去的半个世纪中,分子生物学和生物化学的发展加深了我们对疾病的理解,并且这种理解推动了对生物技术和分子医学治疗方法的探索,这是解释分子生物学的主要理论支架。行为是结构与功能的关系。然而,我们对分子生物学结构与功能关系的理解在很大程度上仅限于中心法则的分子:蛋白质和寡核苷酸。 中心法则之外的各种分子结构,特别是脂质和碳水化合物,表明这些也可以从结构驱动功能的角度来理解。特别是,人们对脂质在质膜中可能发挥的功能作用产生了浓厚的兴趣。该项目部署了一类新型的合成脂质双层,开始在脂质分子结构(无论是单个分子结构还是超分子组织)与质膜的功能之间建立联系。这里开发和部署的研究工具被称为不对称巨型单层囊泡(AGUV),旨在独特地模拟细胞膜,比其他现有的合成脂质双层更好地捕获成分不对称和分子拥挤等特性。 AGUV 可以帮助解决的众多问题之一涉及跨细胞膜的被动运输。被动转运是药物输送和环境毒素进入细胞的重要途径。最近的结果表明,这种运输的机制很复杂,并且高度依赖于脂质行为。该项目部署了一种基于 AGUV 的技术,用于系统测量溶质分子与脂质双层相互作用和穿透脂质双层的动力学,从而产生比其他方法能够提供的更丰富的机械数据。 AGUV 还可用于研究细胞膜的机械特性。这些特性(尤其是抗弯曲性)控制蛋白质功能,并且在一系列生理过程中很重要。虽然合成的脂质双层已被用来探测这些特性,但人们对双层不对称性对其的影响知之甚少。该项目使用 AGUV 来发现这些效应。 脂质与完整膜蛋白的相互作用可能是脂质影响细胞行为的主要模式。然而,人们对这些相互作用的起源或控制参数知之甚少。该项目开始通过使用荧光显微镜来探究模拟各种蛋白质跨膜区域的肽如何与分离的脂质结构域相关联,从而解决 AGUV 中的这个问题。 最后,AGUV 可以促进细胞内部大分子拥挤效应的系统研究。 AGUV 形成的微流体技术允许在其中包含任意分子,从而形成独特的分子拥挤结构。
公共卫生相关性:细胞被由两层脂质分子组成的膜包围,这两层的化学成分不同。在该项目中,采用了一种能够模拟这种不对称性的新型人造细胞膜来研究一系列重要的生物过程,包括药物转运到细胞中、细胞膜的机械变形以及脂质分子与受体之间的相互作用与癌症治疗和糖尿病有关的蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOAH MALMSTADT其他文献
NOAH MALMSTADT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOAH MALMSTADT', 18)}}的其他基金
Connecting plasma membrane function to lipid structure and organization with asym
通过不对称将质膜功能与脂质结构和组织联系起来
- 批准号:
8534183 - 财政年份:2010
- 资助金额:
$ 28.87万 - 项目类别:
Connecting plasma membrane function to lipid structure and organization with asym
通过不对称将质膜功能与脂质结构和组织联系起来
- 批准号:
8311713 - 财政年份:2010
- 资助金额:
$ 28.87万 - 项目类别:
Connecting plasma membrane function to lipid structure and organization with asym
通过不对称将质膜功能与脂质结构和组织联系起来
- 批准号:
8152258 - 财政年份:2010
- 资助金额:
$ 28.87万 - 项目类别:
Connecting plasma membrane function to lipid structure and organization with asym
通过不对称将质膜功能与脂质结构和组织联系起来
- 批准号:
8708115 - 财政年份:2010
- 资助金额:
$ 28.87万 - 项目类别:
Biomimetic Systems for Studying Nanoscale Structure Formation in Cell Membranes
研究细胞膜纳米级结构形成的仿生系统
- 批准号:
7821480 - 财政年份:2009
- 资助金额:
$ 28.87万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 28.87万 - 项目类别:
Investigating the Recruitment of Different Neuronal Subpopulations by Intracortical Micro Stimulation Using Two Photon-Microscopy
使用两个光子显微镜研究皮质内微刺激对不同神经元亚群的招募
- 批准号:
10604754 - 财政年份:2023
- 资助金额:
$ 28.87万 - 项目类别:
Global mapping of altered neural circuits in a mouse model of DDX3X mutations
DDX3X 突变小鼠模型神经回路改变的全局图谱
- 批准号:
10736496 - 财政年份:2023
- 资助金额:
$ 28.87万 - 项目类别:
Decoding tumor metabolic and immunologic interactions driving racial disparity in African American patients with bladder cancer.
解码肿瘤代谢和免疫相互作用导致非裔美国膀胱癌患者的种族差异。
- 批准号:
10718787 - 财政年份:2023
- 资助金额:
$ 28.87万 - 项目类别:
Cardiac Autonomic Activation In Atrial Fibrillation Triggers And Substrate
心房颤动的心脏自主激活触发因素和基质
- 批准号:
10636441 - 财政年份:2023
- 资助金额:
$ 28.87万 - 项目类别: