Computational Biology of Vascular Cell Behavior
血管细胞行为的计算生物学
基本信息
- 批准号:7867863
- 负责人:
- 金额:$ 37.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:AngioblastAnimalsArtsBehaviorBindingBiologicalBiomedical EngineeringBirdsBloodBlood VesselsCell AdhesionCell Differentiation processCellsCodeCollaborationsComputational BiologyComputer SimulationComputersDataElectroporationEmbryoEndothelial CellsExtracellular MatrixFailureFetusGene ExpressionGene SilencingGenesGoalsGrowthImageIn SituInfantKnowledgeLabelLanguageLifeMapsMathematicsMechanical StressMethodsModelingMolecularMotionMusPatternPattern FormationPlant RootsPlasmidsPositioning AttributePreparationProcessProteinsPythonsQuailRNA InterferenceReagentRegulationReporterResourcesSignal TransductionSignaling MoleculeStagingStretchingStructureSupercomputingTechniquesTimeTissuesTransgenic OrganismsVascular DiseasesVascular Endothelial Growth FactorsVascularizationWorkWritinganimationbaseblastocystcell behaviorcell motilitycomputer studiesdesignin vivomalformationmathematical modelmigrationmodels and simulationnoveloffspringprogenitorpublic health relevancescaffoldsimulationspatiotemporaltime usetoolvasculogenesis
项目摘要
DESCRIPTION (provided by applicant): We propose to use dynamic computational imaging, in vivo, to increase our understanding of how endothelial cells and their precursors are precisely patterned in space and time. Dynamic imaging will be combined with a new array of elegant molecular tools tailored for use in quail embryos. To accomplish our goals we propose: 1) To establish a dynamic conceptual framework of how primary vascular patterns emerge in warm-blooded animals; 2) To prepare lineage-fate maps of angioblasts and their progeny and thereby define the primary spatiotemporal pattern of vascular-specific gene expression; 3) To determine the function of key signaling molecules implicated in vascular cell-autonomous motility and differentiation; and 4) To develop biologically-grounded mathematical models and computer simulations of vasculogenesis in amniotes. The work will include preparation of position-fate and lineage maps of angioblasts employing fluorescent reporter proteins and transgenic quail expressing endothelial cell markers. Cell biological reagents and RNAi methods will be used to target signaling molecules that impact primary vascular pattern formation from its inception to its completion, i.e., HH Stages 1-10. The motion of surrounding ECM fibrils, including matrix-bound VEGF, and bulk tissue flow will be quantified and distinguished from the local cell-autonomous motility ("migration") of angioblasts and primordial endothelial cells, in vivo. We will then collaborate with physicists and mathematicians to construct novel, biologically-grounded, models of vasculogenesis, and also design computer simulations. The models and simulations will be based on both the empirical time-lapse imaging data, and the experimental perturbation/gene silencing data. The overall goal, therefore, is to "solve" all relevant cellular motion, tissue flow and ECM motion patterns that define vasculogenesis much like a physical biochemist solves the structures of a protein. Based on this conceptual framework we will then intervene experimentally at critical junctures to illuminate how key molecular mechanisms operate, in situ, in "real-time". During the lifetime of the proposed studies we will observe gene-silencing on-the-fly in a warm-blooded embryo. PUBLIC HEALTH RELEVANCE: The proposed work will help decipher the cell and tissue behavior required to form healthy vessels and to help explain the mechanisms underlying the failure of diseased vessels and the root causes of vascular malformations in fetuses and infants. A major strength of the application is that the work employs "real-time" motion analysis in live tissues; thus we are not using a model of vascularization on the contrary, we are directly studying the process in a real world biological setting. Knowledge gained by our dynamic computational studies on regulation of early vessel growth and pattern formation will, ipso facto, reveal underlying causes of vascular disease.
描述(由申请人提供):我们建议在体内使用动态计算成像,以增加我们对内皮细胞及其前体细胞如何在空间和时间上精确形成模式的理解。动态成像将与一系列专为鹌鹑胚胎量身定制的新型分子工具相结合。为了实现我们的目标,我们建议:1)建立一个关于温血动物主要血管模式如何出现的动态概念框架; 2) 准备成血管细胞及其后代的谱系命运图谱,从而定义血管特异性基因表达的主要时空模式; 3) 确定与血管细胞自主运动和分化有关的关键信号分子的功能; 4) 开发基于生物学的羊膜动物血管发生的数学模型和计算机模拟。这项工作将包括利用荧光报告蛋白和表达内皮细胞标记的转基因鹌鹑来制备成血管细胞的位置命运和谱系图。细胞生物试剂和 RNAi 方法将用于靶向影响初级血管模式形成从开始到完成(即 HH 阶段 1-10)的信号分子。周围 ECM 原纤维(包括基质结合的 VEGF)和大量组织流的运动将被量化,并与体内成血管细胞和原始内皮细胞的局部细胞自主运动(“迁移”)区分开来。然后,我们将与物理学家和数学家合作,构建新颖的、以生物学为基础的血管发生模型,并设计计算机模拟。模型和模拟将基于经验延时成像数据和实验扰动/基因沉默数据。因此,总体目标是“解决”定义血管发生的所有相关细胞运动、组织流动和 ECM 运动模式,就像物理生物化学家解决蛋白质结构一样。基于这个概念框架,我们将在关键时刻进行实验干预,以阐明关键分子机制如何在原位“实时”运作。在拟议研究的生命周期中,我们将观察温血胚胎中动态的基因沉默。公共健康相关性:拟议的工作将有助于破译形成健康血管所需的细胞和组织行为,并帮助解释患病血管衰竭的机制以及胎儿和婴儿血管畸形的根本原因。该应用程序的主要优势在于,该工作采用了活组织中的“实时”运动分析;因此,我们没有使用血管化模型,相反,我们直接研究现实世界生物环境中的过程。通过我们对早期血管生长和模式形成调节的动态计算研究获得的知识,事实上将揭示血管疾病的根本原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES D. LITTLE其他文献
CHARLES D. LITTLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES D. LITTLE', 18)}}的其他基金
VASCULAR SIGNALS AND RECEPTORS IN ENDOCARDIAL MORPHOGENESIS
心内膜形态发生中的血管信号和受体
- 批准号:
6608682 - 财政年份:2002
- 资助金额:
$ 37.93万 - 项目类别:
VASCULAR SIGNALS AND RECEPTORS IN ENDOCARDIAL MORPHOGENESIS
心内膜形态发生中的血管信号和受体
- 批准号:
6564952 - 财政年份:2002
- 资助金额:
$ 37.93万 - 项目类别:
相似国自然基金
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市河流底栖动物性状β多样性的空间格局及群落构建研究
- 批准号:32301334
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 37.93万 - 项目类别:
The representation and modulation of sensory information in the learning and memory center of the Drosophila brain
果蝇大脑学习记忆中心感觉信息的表示和调制
- 批准号:
10436182 - 财政年份:2021
- 资助金额:
$ 37.93万 - 项目类别:
The representation and modulation of sensory information in the learning and memory center of the Drosophila brain
果蝇大脑学习记忆中心感觉信息的表示和调制
- 批准号:
10314793 - 财政年份:2021
- 资助金额:
$ 37.93万 - 项目类别:
South Texas Alzheimer's Disease Center Imaging Core
南德克萨斯阿尔茨海默病中心影像核心
- 批准号:
10472660 - 财政年份:2021
- 资助金额:
$ 37.93万 - 项目类别: