Testing competing models of the computational role of dopamine in hallucinations
测试多巴胺在幻觉中的计算作用的竞争模型
基本信息
- 批准号:10752192
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdherenceArbitrationAuditoryAutomobile DrivingBasal GangliaBehaviorBrain DiseasesBrain regionClinicalCognitiveComputer ModelsCorpus striatum structureDataDetectionDevelopmentDissociationDopamineDorsalFosteringFunctional Magnetic Resonance ImagingGeneral PopulationHallucinationsHearingIncentivesLearningLinkLiteratureMagnetic Resonance ImagingMathematicsMeasuresMidbrain structureModelingNeurocognitiveNeurosciencesParticipantPatientsPerceptionPerceptual disturbancePerceptual learningProcessProxyPsychiatryQuality of lifeReportingResearch PersonnelRewardsSamplingSchizophreniaSeveritiesSignal TransductionSpecificityStimulusSubstantia nigra structureTestingTrainingUpdateVentral StriatumVentral Tegmental Areabehavior predictioncognitive processcomorbiditydesigndopaminergic neuroneffective therapyexpectationexperienceimprovedindexingindividualized medicineinterestneuralneural circuitneural correlateneurochemistryneuroimagingneuromelaninnovelpharmacologicphenomenological modelspredictive modelingrole modelsensory stimulusside effectsymptomatic improvementtheoriestransmission processtreatment adherencetreatment strategy
项目摘要
Project Summary:
Hallucinations are common in clinical and nonclinical groups, can be difficult to treat, and often predict worsening
functionality. The poor efficacy and severe side effects of current treatments are in part a consequence of our
immature understanding of the mechanisms that cause hallucinations. Excess striatal dopamine release has
been causally implicated in the development and severity of hallucinations but the precise circuits and cognitive
processes that link this neurochemical alteration to false perception remain unclear. Evidence from the basic
neuroscience literature has inspired competing theories about how excess striatal dopamine drives
hallucinations. Specifically, reward and perceptual hypotheses of hallucinations have emerged, but they have
yet to be directly tested in a falsifiable framework. Identifying which of these hypothesized mechanisms drives
hallucinations is critically important given that reward and perceptual learning are facilitated by distinct
dopaminergic basal circuits each of which may provide a separate treatment target. We have developed a
mathematical framework that formalizes these hypotheses with biologically grounded computational models and
generated falsifiable predictions about how alterations in either perceptual or reward learning could drive
hallucinations.
Here, we will rigorously test the neural and behavioral predictions of these models using a novel fMRI-compatible
auditory signal-detection task and a validated proxy measure for midbrain dopamine function. In Aim 1, we will
evaluate participant perceptual and reward learning and the relationship with hallucination proneness. In Aim 2,
we will identify the neural circuits that support reward and perceptual learning during the task. In Aim 3, we will
use a validated proxy measure of dopamine function to dissociate the specific subcircuits driving alterations in
learning. Overall, the proposed study aims to bridge the explanatory gap between our understanding of the
neurochemistry and phenomenology of hallucinations. Critically, this could promote the identification of
individualized treatment targets that are not only more effective but have more limited side effects. This proposal
will also support my training in state-of-the-art computational modeling and neuroimaging approaches and
promote my development as an independent researcher in the field of computational psychiatry.
项目概要:
幻觉在临床和非临床群体中很常见,可能难以治疗,并且通常预示着病情会恶化
功能。当前治疗效果不佳和严重副作用的部分原因是我们的
对引起幻觉的机制的不成熟理解。纹状体多巴胺释放过多
与幻觉的发展和严重程度有因果关系,但精确的回路和认知
将这种神经化学改变与错误知觉联系起来的过程仍不清楚。基本证据
神经科学文献激发了关于过量纹状体多巴胺如何驱动的相互竞争的理论
幻觉。具体来说,幻觉的奖励和知觉假设已经出现,但它们没有
尚未在可证伪的框架中直接进行测试。确定这些假设机制中的哪一个驱动
鉴于奖励和知觉学习是通过不同的机制来促进的,幻觉至关重要
多巴胺能基础回路中的每一个都可以提供单独的治疗目标。我们开发了一个
数学框架,用基于生物学的计算模型形式化这些假设,
生成了关于感知或奖励学习的改变如何驱动的可证伪的预测
幻觉。
在这里,我们将使用一种新型的功能磁共振成像兼容来严格测试这些模型的神经和行为预测
听觉信号检测任务和经验证的中脑多巴胺功能代理测量。在目标 1 中,我们将
评估参与者的感知和奖励学习以及与幻觉倾向的关系。在目标 2 中,
我们将识别任务期间支持奖励和感知学习的神经回路。在目标 3 中,我们将
使用经过验证的多巴胺功能代理测量来分离驱动改变的特定子电路
学习。总体而言,拟议的研究旨在弥合我们对
幻觉的神经化学和现象学。至关重要的是,这可以促进对
个体化治疗目标不仅更有效,而且副作用也更有限。这个提议
还将支持我在最先进的计算建模和神经影像方法方面的培训,
促进我作为计算精神病学领域的独立研究员的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Buck其他文献
Justin Buck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
苏云金杆菌噬菌体“仲裁”系统调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于排队论的仲裁网络结构性能分析与优化
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
基于离线仲裁的量子令牌认证理论研究
- 批准号:61802118
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
不完全信息下最后要价仲裁对讨价还价的影响——基于理论和实验的分析
- 批准号:71401094
- 批准年份:2014
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
具有安全仲裁员的属性加密
- 批准号:61402136
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
E-Arbitration: technological innovation, due process, and fairness in international commercial arbitration
电子仲裁:国际商事仲裁的技术创新、正当程序和公平性
- 批准号:
23K01164 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MCA: Arbitration between cortical and subcortical control of behavior
MCA:皮层和皮层下行为控制之间的仲裁
- 批准号:
2317546 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
仲裁における手続保障―due process paranoia論を素材として
仲裁中的程序保障:基于正当程序偏执理论
- 批准号:
23K01191 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing artificial neural network tools for cognitive modeling
开发用于认知建模的人工神经网络工具
- 批准号:
10641215 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: