CFI Inactivation of Human Plasma

人血浆的 CFI 灭活

基本信息

  • 批准号:
    7675084
  • 负责人:
  • 金额:
    $ 34.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The worldwide AIDS epidemic, the periodic emergence of Ebola and SARS, and the recent outbreaks of potentially pandemic strains of influenza such as H5N1 have highlighted a persistent concern in the health- care community -- the need for effective sterilization techniques for human blood plasma and plasma-derived products. There are also a number of emerging viruses such as West Nile and a number of potential bioterrorism pathogens such as smallpox that are of concern to the safety of the human plasma supply. The causes of the more rapid emergence and spread of these "killer" viruses are not entirely known, but are thought to be caused by some combination of deforestation with urbanization of wild virus habitats, evolutionary mutations, and rapid travel between countries around the globe that can facilitate the spread of both natural and bioterrorism pathogens. A number of approaches have been employed for the inactivation or removal of viruses in human plasma and therapeutic proteins derived from human plasma, including: heating or pasteurization; solvent-detergent technique; Ultra Violet (UV) irradiation; chemical inactivation utilizing hydrolyzable compounds such as 2- proprionolactone and ozone; and photochemical decontamination using synthetic psoralens. Thus, current approaches are not always effective against a wide spectrum of human and animal viruses, are sometimes encumbered by process-specific deficiencies, and often result in denaturation of the biologicals that they are designed to protect. Some of the commercially available methods are effective in inactivating enveloped viruses, such as HIV, but are not very effective against nonenveloped viruses such as Hepatitis A (HAV) and parvovirus B19. We propose to develop a safe and cost-effective universal process and equipment for the inactivation of non- enveloped and enveloped viruses in pooled as well as single units of human plasma. We propose to do so by further advancing a unique, rapid and generally applicable virus inactivation technique based on supercritical and near-critical fluids (SuperFluids" or SFS) technology. SuperFluids" are normally gases which, when compressed, exhibit enhanced solvation, penetration and expansion properties. These gases are used to permeate and inflate the virus particles. The overfilled particles are then decompressed and, as a result of rapid phase conversion, rupture at their weakest points. The process is purely physical and does not involve the use of heat, chemicals and/or irradiation, each of which has significant drawbacks in the viral inactivation of human plasma. Our research to date indicates that the SuperFluids" CFI (critical fluid inactivation) process inactivates enveloped viruses such as MuLV, VSV, TGE, BVD, Sindbis and HIV in fetal bovine serum by a lipid solubilization mechanism, similar to the solvent detergent method. Our research also indicates that SFS-CFI inactivates non-enveloped viruses surrounded by a tough protein capsid through rapid expansion of the fluid with concomitant physical disruption of viral particles. SFS-CFI's ability to inactivate non-enveloped viruses such as Polio, Adeno, Reo and EMC in fetal bovine serum, while preserving biological activity of the treated product, has been demonstrated. In a research collaboration with the National Institute of Biological Standards and Control (NIBSC), London, England, we have also demonstrated that SuperFluids" CFI can inactivate more than 4 logs of human Parvovirus B19 in human serum in a two-stage CFI unit in less than one minute. The revised Specific Aims of the proposed Phase I research program are: " Specific Aim 1: Mathematically model and evaluate key process parameters that are critical for scaling-up of the laminar flow CFI unit and the SFS-CFI process. Mathematical modeling and transport phenomena calculations will be conducted to define optimum SFS and plasma parameters such as density, fluid type and droplet size for effective contact of the viral particles by the SFS, penetration, saturation, expansion, disruption and inactivation. " Specific Aim 2: Based on the results of this modeling, design and test injection nozzles and isobaric chamber as well as define operating conditions for achieving > 3 logs of virus inactivation of a prototypical enveloped virus and a prototypical nonenveloped virus in a single laminar flow CFI unit with retention of > 90% of protein integrity. In Phase II, we will scale-up by a factor of 500X then scale-down by a factor of 10X to 100X, a single-stage laminar flow SFS-CFI prototype. We also plan to validate a large-scale SuperFluids" CFI prototype for human plasma under cGMP conditions. In Phase III, with a pharmaceutical/biologics partner such as Baxter International and/or an institutional partner such as the American Red Cross, the Department of Defense or the National Heart, Blood and Lung Institute, we plan to conduct pre-clinical toxicology and pharmacology studies, file an IND with the FDA and conduct Phase I clinical trials. PUBLIC HEALTH RELEVANCE: There are a number of emerging viruses such as West Nile, Ebola, SARS potential pandemic strains of influenza (H5N1) and a number of potential bioterrorism pathogens such as smallpox that are of concern to the safety of the human plasma supply. Current approaches are not always effective against a wide spectrum of human and animal viruses, are sometimes encumbered by process-specific deficiencies, and often result in denaturation of the biologicals that they are designed to protect. We propose to develop a purely physical technique that gives the virus the "bends," inactivating them without damaging proteins and enzymes in medically important fluids such as human plasma. This technique does not involve the use of heat, chemicals and/or irradiation, each of which has significant drawbacks in the viral inactivation of human plasma. Aphios Corporation will focus on developing this physical virus inactivation technique for areas of human use where a virus inactivation step is essential and will remain necessary for the manufacture of safe products. A generally applicable and effective virus inactivation process that increases yield from plasma and reduces processing cost will have a significant impact in the marketplace. We plan to commercialize this technology as an orthogonal virus inactivation technology to techniques such as solvent-detergent (S/D) that is not effective against non-enveloped viruses and passive virus removal techniques such as nanofiltration. This approach is consistent with the regulatory authorities in Europe and the US that require a minimum of two virus inactivation technologies, which work by different mechanisms of action.
描述(由申请人提供):世界范围内的艾滋病流行、埃博拉和非典型肺炎的周期性出现,以及最近爆发的 H5N1 等潜在大流行性流感病毒株,都凸显了卫生保健界持续关注的问题——需要有效的人血浆和血浆衍生产品的灭菌技术。还有一些新出现的病毒(例如西尼罗河病毒)和一些潜在的生物恐怖主义病原体(例如天花)对人类血浆供应的安全性构成威胁。这些“杀手”病毒更快出现和传播的原因尚不完全清楚,但被认为是由森林砍伐与野生病毒栖息地的城市化、进化突变以及全球各国之间的快速传播共同造成的。可以促进自然和生物恐怖主义病原体的传播。已采用多种方法来灭活或去除人血浆中的病毒和源自人血浆的治疗性蛋白质,包括:加热或巴氏灭菌;溶剂洗涤剂技术;紫外线(UV)照射;利用可水解化合物例如2-丙内酯和臭氧进行化学灭活;以及使用合成补骨脂素进行光化学净化。因此,当前的方法并不总是能有效对抗多种人类和动物病毒,有时会受到特定过程缺陷的阻碍,并且常常导致其旨在保护的生物制品变性。一些市售方法可有效灭活包膜病毒,例如 HIV,但对非包膜病毒,例如甲型肝炎 (HAV) 和细小病毒 B19 不是很有效。我们建议开发一种安全且具有成本效益的通用工艺和设备,用于灭活混合和单个单位的人血浆中的非包膜和包膜病毒。我们建议通过进一步推进基于超临界和近临界流体(超级流体”或 SFS)技术的独特、快速且普遍适用的病毒灭活技术来实现这一目标。超级流体”通常是气体,在压缩时表现出增强的溶剂化、渗透和膨胀特性。这些气体用于渗透和膨胀病毒颗粒。然后,过度填充的颗粒被减压,并且由于快速相转变,在其最薄弱处破裂。该过程是纯粹的物理过程,不涉及使用热、化学物质和/或辐射,这三种方法在灭活人血浆病毒方面都有显着的缺点。我们迄今为止的研究表明,SuperFluids“CFI(临界流体灭活)过程通过脂质溶解机制灭活胎牛血清中的包膜病毒,如 MuLV、VSV、TGE、BVD、Sindbis 和 HIV,类似于溶剂洗涤剂方法。研究还表明,SFS-CFI 通过液体的快速膨胀并同时物理破坏病毒颗粒,使被坚韧蛋白质衣壳包围的无包膜病毒灭活。 SFS-CFI 能够灭活胎牛血清中的无包膜病毒(如脊髓灰质炎病毒、腺病毒、Reo 病毒和 EMC),同时保留处理后产品的生物活性,这已在与美国国家生物标准与控制研究所的一项研究合作中得到证明。 (NIBSC),英国伦敦,我们还证明,SuperFluids" CFI 可以在不到 1 秒的时间内在两阶段 CFI 装置中灭活人血清中超过 4 个对数的人类细小病毒 B19 分钟。拟议的第一阶段研究计划修订后的具体目标是:“具体目标 1:对层流 CFI 装置和 SFS-CFI 工艺的放大至关重要的关键工艺参数进行数学建模和评估。数学建模和传输现象将进行计算以确定最佳 SFS 和等离子体参数,例如密度、流体类型和液滴大小,以实现 SFS 有效接触病毒颗粒、渗透、饱和、扩张、破坏和灭活“具体目标 2:基于。根据该建模的结果,设计和测试注射喷嘴和等压室,并定义操作条件,以在单个层流 CFI 装置中实现典型有包膜病毒和典型无包膜病毒的 > 3 对数病毒灭活,并保留 > 90% 的蛋白质完整性。在第二阶段,我们将放大 500 倍,然后缩小 10 倍至 100 倍,形成单级层流 SFS-CFI 原型。我们还计划在 cGMP 条件下验证用于人血浆的大规模“SuperFluids”CFI 原型。在第三阶段,与 Baxter International 等制药/生物制剂合作伙伴和/或美国红十字会等机构合作伙伴合作,国防部或国家心脏、血液和肺研究所,我们计划进行临床前毒理学和药理学研究,向 FDA 提交 IND 并进行 I 期临床试验。西尼罗河病毒、埃博拉病毒、SARS 潜在大流行性流感病毒株 (H5N1) 以及天花等一些潜在的生物恐怖主义病原体,这些病毒与人类血浆供应的安全有关,目前的方法并不总是有效。广泛的人类和动物病毒,有时会受到特定过程缺陷的阻碍,并且常常导致其旨在保护的生物制品变性。我们建议开发一种纯物理技术,为病毒提供保护。 “弯曲”,使它们失活而不破坏医学上重要的液体(例如人血浆)中的蛋白质和酶。该技术不涉及使用热、化学品和/或辐射,这三种方法在人血浆病毒灭活方面都有显着的缺点。 Aphios 公司将专注于开发这种物理病毒灭活技术,用于人类使用的领域,在这些领域,病毒灭活步骤是必不可少的,并且对于安全产品的制造仍然是必要的。一种普遍适用且有效的病毒灭活工艺,可以提高血浆产量并降低处理成本,将对市场产生重大影响。我们计划将该技术商业化,作为一种正交病毒灭活技术,与对无包膜病毒无效的溶剂去污剂(S/D)等技术和纳滤等被动病毒去除技术相结合。这种方法符合欧洲和美国监管机构的要求,即至少需要两种通过不同作用机制发挥作用的病毒灭活技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TREVOR P. CASTOR其他文献

TREVOR P. CASTOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TREVOR P. CASTOR', 18)}}的其他基金

Double-Encapsulated mRNA Vaccine for COVID-19
适用于 COVID-19 的双囊 mRNA 疫苗
  • 批准号:
    10611763
  • 财政年份:
    2023
  • 资助金额:
    $ 34.43万
  • 项目类别:
Combination Therapeutic for Chronic Opioid Use Disorder Relapse
慢性阿片类药物使用障碍复发的联合治疗
  • 批准号:
    10706844
  • 财政年份:
    2023
  • 资助金额:
    $ 34.43万
  • 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
  • 批准号:
    8966448
  • 财政年份:
    2015
  • 资助金额:
    $ 34.43万
  • 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
  • 批准号:
    8834719
  • 财政年份:
    2014
  • 资助金额:
    $ 34.43万
  • 项目类别:
Development of SFS Fractionators
SFS分馏塔的开发
  • 批准号:
    8712743
  • 财政年份:
    2014
  • 资助金额:
    $ 34.43万
  • 项目类别:
Alzheimer's Disease Therapeutic
阿尔茨海默病治疗
  • 批准号:
    8323257
  • 财政年份:
    2010
  • 资助金额:
    $ 34.43万
  • 项目类别:
Alzheimer's Disease Therapeutic
阿尔茨海默病治疗
  • 批准号:
    7917968
  • 财政年份:
    2010
  • 资助金额:
    $ 34.43万
  • 项目类别:
Alzheimer's Disease Therapeutic
阿尔茨海默病治疗
  • 批准号:
    8306435
  • 财政年份:
    2010
  • 资助金额:
    $ 34.43万
  • 项目类别:
CFI Pathogen Inactivation Technology
CFI病原体灭活技术
  • 批准号:
    7830669
  • 财政年份:
    2009
  • 资助金额:
    $ 34.43万
  • 项目类别:
CFI Pathogen Inactivation Technology
CFI病原体灭活技术
  • 批准号:
    7830669
  • 财政年份:
    2009
  • 资助金额:
    $ 34.43万
  • 项目类别:

相似海外基金

Research Project 1 Defining oncogenic signaling networks in AIDS-associated viral cancers as targets of chemoprevention and treatment
研究项目 1 将艾滋病相关病毒癌症中的致癌信号网络定义为化学预防和治疗的目标
  • 批准号:
    10488067
  • 财政年份:
    2017
  • 资助金额:
    $ 34.43万
  • 项目类别:
Research Project 1 Defining oncogenic signaling networks in AIDS-associated viral cancers as targets of chemoprevention and treatment
研究项目 1 将艾滋病相关病毒癌症中的致癌信号网络定义为化学预防和治疗的目标
  • 批准号:
    10246318
  • 财政年份:
    2017
  • 资助金额:
    $ 34.43万
  • 项目类别:
CFI Pathogen Inactivation Technology
CFI病原体灭活技术
  • 批准号:
    7830669
  • 财政年份:
    2009
  • 资助金额:
    $ 34.43万
  • 项目类别:
CFI Pathogen Inactivation Technology
CFI病原体灭活技术
  • 批准号:
    7830669
  • 财政年份:
    2009
  • 资助金额:
    $ 34.43万
  • 项目类别:
CFI Pathogen Inactivation Technology
CFI病原体灭活技术
  • 批准号:
    7933943
  • 财政年份:
    2009
  • 资助金额:
    $ 34.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了