Inducing susceptibility with a small multidrug resistance transporter from P. aeruginosa
用来自铜绿假单胞菌的小型多药耐药转运蛋白诱导敏感性
基本信息
- 批准号:10619555
- 负责人:
- 金额:$ 3.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBehaviorBindingBinding SitesBiochemicalBiochemistryBiologicalBiological AssayBiological ModelsCell RespirationCellsChargeChemicalsClassificationClinicalCoupledCouplingDataDevelopmentDoseEducationElectrophysiology (science)Energy-Generating ResourcesEscherichia coliExperimental DesignsFoundationsFutureGoalsGrowthHomologous GeneInfectionInfectious Diseases ResearchInvestigationIon CotransportKnowledgeLeadLiposomesLocal Anti-Infective AgentsMagnetic ResonanceMembraneMinimum Inhibitory Concentration measurementModelingMolecularMonitorMulti-Drug ResistanceMutationNatural ProductsOrganismOutcomePharmaceutical PreparationsPhenotypePlantsPoisonPopulationPredispositionProteinsProton-Motive ForceProtonsPseudomonas aeruginosaPublic HealthResearchResearch PersonnelResistanceRespirationSiteSolidSubstrate InteractionSupervisionTechniquesTestingTherapeuticTrainingTransport ProcessUniportUniversitiesVertebral columnWisconsinantiportantiporterbiophysical techniquesclinically relevantcystic fibrosis patientsefflux pumpexperimental studyglobal healthhuman pathogenin vivoinnovationlarge datasetsmutantnovelnovel therapeuticspathogenpriority pathogenprogramsresistance mechanismresponsible research conductsmall moleculeuptake
项目摘要
ABSTRACT
Antibiotic resistance is a growing global health concern, due in part to the action of efflux pumps in
pathogens. One class of efflux pumps, the Small Multidrug Resistance transporters (SMRs), remove toxic
compounds from the cell with proton-coupled transport. SMRs have historically been described as antiporters,
but recent evidence demonstrates that the best-studied of the SMRs, EmrE, can perform antiport, symport,
and/or uniport based on a “free-exchange” model. This model suggests that SMRs may induce susceptibility to
some compounds rather than resistance, either through direct influx/symport or by rundown of the proton-
motive force through uncontrolled proton uniport. In either case, this is a powerful strategy as it requires an
SMR to be merely present, rather than be the primary resistance mechanism of the given bacterial population.
Additionally, as the proton-motive force (PMF) is the main energy source of other multidrug-resistance efflux
pumps, rundown of the PMF means targeting other efflux pumps, not just SMRs. Herein I propose an
investigation of the transport mechanisms of PaSMR, an EmrE homolog from the pathogen Pseudomonas
aeruginosa, hypothesizing that PaSMR may induce susceptibility, rather than resistance, to some
compounds. In Aim 1, novel substrates of PaSMR will be discovered by phenotypic microarray and validated
by growth curves. WT PaSMR and a transport-dead mutant will be compared to determine if these substrates
trigger resistance or susceptibility. In Aim 2, solid-supported membrane-based electrophysiology experiments
will reveal transport mode based on differences in transported charge with various substrate/proton gradients.
This is hypothesized to be antiport for resistance substrates, but may be symport or uniport for susceptibility
substrates. Finally, in Aim 3, solution NMR resonance assignments for PaSMR will be determined, allowing the
tracking of specific residues and binding interactions with different substrates. This will identify specific
interactions responsible for susceptibility outcomes. Overall, this proposal will shift our paradigm of transport by
uncovering how PaSMR changes transport mode in a substrate-dependent manner, and investigate inducing
susceptibility and using proton-motive force rundown as a therapeutic avenue for multidrug-resistant infections.
This training plan will develop my microbiological knowledge and techniques, understanding of public
health concerns, biophysical techniques and experimental design, and management and interpretation of large
data sets. Research will be conducted at the University of Wisconsin-Madison, a leading biochemical research
center, under the supervision of Dr. Katherine Henzler-Wildman, a renowned researcher in the field of
transport as well as a co-director of the National Magnetic Resonance Facility at Madison. Training will take
place within the Integrated Program in Biochemistry, which provides high-quality biochemical education,
training in responsible conduct of research, and professional development opportunities to prepare me to be a
future leader in infectious disease research.
抽象的
抗生素耐药性是一个日益严重的全球健康问题,部分原因是外排泵的作用
一类外排泵,即小型多药耐药转运蛋白(SMR),可以清除有毒物质。
来自具有质子耦合转运的细胞的化合物历来被描述为反向转运蛋白,
但最近的证据表明,SMR 中研究最充分的 EmrE 可以执行反移植、同向移植、
和/或基于“自由交换”模型的单端口 该模型表明 SMR 可能会诱发对病毒的易感性。
一些化合物而不是阻力,无论是通过直接流入/同向运输还是通过质子的耗尽
无论哪种情况,这都是一个强大的策略,因为它需要一个强大的策略。
SMR 只是存在,而不是给定细菌群体的主要耐药机制。
此外,由于质子动力(PMF)是其他多重耐药外排的主要能量来源
泵,PMF 的淘汰意味着针对其他外排泵,而不仅仅是 SMR。
PaSMR(来自病原体假单胞菌的 EmrE 同源物)转运机制的研究
铜绿假单胞菌,假设 PaSMR 可能会诱导对某些细菌的敏感性,而不是耐药性
在目标 1 中,将通过表型微阵列发现 PaSMR 的新底物并进行验证。
通过生长曲线比较 WT PaSMR 和转运死亡突变体,以确定这些底物是否有效。
在目标 2 中,基于固体支持的膜的电生理学实验。
将揭示基于不同底物/质子梯度的传输电荷差异的传输模式。
这被认为是抗性底物的反端口,但对于敏感性可能是同向端口或单端口
最后,在目标 3 中,将确定 PaSMR 的溶液 NMR 共振分配,从而允许
跟踪特定残基以及与不同底物的结合相互作用,这将识别特定的残基。
总体而言,该提案将通过以下方式改变我们的运输范式。
揭示 PaSMR 如何以底物依赖性方式改变传输模式,并研究诱导
敏感性并使用质子动力下降作为多重耐药感染的治疗途径。
该培训计划将发展我的微生物知识和技术,了解公众
健康问题、生物物理技术和实验设计以及大型研究的管理和解释
研究将在威斯康星大学麦迪逊分校进行,这是一家领先的生化研究机构。
中心,在该领域的著名研究员 Katherine Henzler-Wildman 博士的指导下
运输以及麦迪逊国家磁共振设施的联合主任将负责。
在生物化学综合项目中占有一席之地,该项目提供高质量的生物化学教育,
负责任的研究行为培训和专业发展机会,使我做好成为一名
传染病研究的未来领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Killian Wegrzynowicz其他文献
Andrea Killian Wegrzynowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Killian Wegrzynowicz', 18)}}的其他基金
Inducing susceptibility with a small multidrug resistance transporter from P. aeruginosa
用来自铜绿假单胞菌的小型多药耐药转运蛋白诱导敏感性
- 批准号:
10461633 - 财政年份:2022
- 资助金额:
$ 3.53万 - 项目类别:
相似国自然基金
人工甜味剂诱导蚯蚓肠道抗生素抗性基因的增长行为及微生物驱动机制
- 批准号:42307015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间限域铁基MOFs衍生物强化污泥生物炭介导洞庭湖湿地沉积物中抗生素消减的行为机理研究
- 批准号:52379064
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
微塑料吸附对地表水中手性四环素类抗生素降解行为的影响机制
- 批准号:42307093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于激子与载流子行为调控的共价有机框架材料光催化处理水体中的抗生素抗性细菌/基因的机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
负电荷辅助氢键作用下微塑料对抗生素的滞留行为研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
The role of master regulator NtrC in amyloid fibril dependent pathogenic traits of Pseudomonas aeruginosa
主调节因子 NtrC 在铜绿假单胞菌淀粉样原纤维依赖性致病性状中的作用
- 批准号:
10652868 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Non-tuberculous mycobacterium and B cells in the stimulation of ectopic germinal centers and immunological control of pulmonary tuberculosis
非结核分枝杆菌和 B 细胞在异位生发中心刺激和肺结核免疫控制中的作用
- 批准号:
10569865 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别: