Post-translational mechanisms of cardiac adaptation during unloading
卸载过程中心脏适应的翻译后机制
基本信息
- 批准号:10878041
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAcuteAffectAtrophicBiochemistryCardiacCardiac MyocytesCardiovascular DiseasesCell SizeCellsCessation of lifeChemicalsChicagoDataDeacetylationDependovirusDevicesDominant-Negative MutationDoseEnvironmentEnzymesEquilibriumGoalsHDAC3 geneHDAC4 geneHeartHistone DeacetylaseHistone Deacetylase InhibitorHormonalHumanHypertrophic CardiomyopathyHypertrophyIllinoisInterventionJournalsKnowledgeLeftLysineMalignant NeoplasmsMass Spectrum AnalysisMechanicsMentorsMethodsModelingModificationMolecularMusMuscle ProteinsMyocardialMyosin ATPaseNormal CellOligonucleotidesOutcomePathologyPathway interactionsPeriodicityPhasePhysiologicalPhysiologyPost-Translational Protein ProcessingProcessProteinsProteomicsPublicationsRattusRegulationResearchResearch PersonnelRestSarcomeresSignal PathwaySiteSmall Interfering RNAStimulusStructureTestingTrainingUbiquitinUbiquitinationUniversitiesVentricularWeight LiftingWorkactin capping proteinalpha Actininaorta constrictioncareercareer developmentdosageextracellulargel electrophoresisheart cellhemodynamicsinduced pluripotent stem cellinhibitorinnovationmechanical loadmechanical stimulusmouse modelmuscle formoverexpressionprogramsprotein degradationproteostasisresponsesarcopenia
项目摘要
PROJECT SUMMARY
Cardiovascular diseases are responsible for more deaths each year than cancer, which is why it is important to
study how to keep hearts healthy. Hearts undergo physiological remodeling; this is a structural and functional
adjustment that matches contractile capacity to hemodynamic demand. In cardiomyocytes, hormonal and
mechanosensitive signaling pathways maintain the balance between normal cell size, hypertrophy, or atrophy.
Pathologies develop when the adequate adaptation to a stimulus is mismatched. My long-term goal is to
establish an independent research program on understanding how mechanical load affects myocardial
structure and function and what are the contributing molecular mechanisms. My recent publication in the
Journal of General Physiology shows that changing mechanical stimulus of cardiac myocytes affects the
dynamics and post-translational modification of the Z-disc actin-capping protein CapZ. I wish to extend this in a
new direction working as an independent investigator. Accordingly, my central hypothesis is that mechanical
load of cardiomyocytes regulates protein homeostasis in sarcomeres through the balance between acetylation
and ubiquitination of lysine residues. Histone deacetylase 3 (HDAC3) is one known acetylation enzyme of
sarcomeric proteins. I focus on the Z-disc proteins CapZ and α-actinin because they both maintain sarcomere
integrity and because acetylation sites have been previously found in both proteins. My preliminary data shows
that unloading changes the relative abundance of CapZ and α-actinin ubiquitination and acetylation. The goal
of the K99 mentored phase is (1) to determine post-translational modifications arising from chemical or
mechanical unloading of isolated cardiomyocytes with focus on acetylation and K48-oligo-ubiquitination. The
goals of the R00 independent phase are (2) to characterize how HDAC3 activity in cardiomyocytes regulates
α-actinin and CapZ deacetylation with varying mechanical load and (3) to determine the changes in post-
translational modification of sarcomeric proteins by HDAC3 during left-ventricular unloading in whole hearts.
The innovation of this project lies in the combination of cardiomyocyte mechanobiology with post-translational
molecular biochemistry to understand how cardiac cells maintain sarcomeric protein balance through the
ubiquitin-acetylation pathway in response to mechanical stimuli. The outcomes of this project will expand our
knowledge about the signaling pathways responsible for modulating protein homeostasis in cardiomyocytes
that may develop new research lines for regulation in hypertrophic cardiomyopathies and sarcopenia. The
career development activities in this proposal, in addition to the exceptional mentoring team and research
environment at the University of Illinois at Chicago, will support my successful transition to a career as an
independent investigator.
项目概要
每年,心血管疾病造成的死亡人数比癌症还要多,这就是为什么重要的是
研究如何保持心脏健康,这是一种结构和功能的重塑;
使收缩能力与血流动力学需求相匹配的调整。
机械敏感信号通路维持正常细胞大小、肥大或萎缩之间的平衡。
当对刺激的充分适应不匹配时,就会出现病理现象。我的长期目标是。
建立一个独立的研究计划来了解机械负荷如何影响心肌
结构和功能以及贡献的分子机制是什么。
《普通生理学杂志》表明,改变心肌细胞的机械刺激会影响
Z 盘肌动蛋白加帽蛋白 CapZ 的动力学和翻译后修饰我希望将其扩展为
作为一名独立调查员工作的新方向因此,我的中心假设是机械的。
心肌细胞负荷通过乙酰化之间的平衡调节肌节中的蛋白质稳态
组蛋白脱乙酰酶 3 (HDAC3) 是一种已知的乙酰化酶。
我关注 Z 盘蛋白 CapZ 和 α-肌动蛋白,因为它们都维持肌节。
完整性,因为之前在这两种蛋白质中都发现了乙酰化位点。
卸载改变了 CapZ 和 α-肌动蛋白泛素化和乙酰化的相对丰度。
K99 指导阶段的任务是 (1) 确定由化学或化学物质引起的翻译后修饰
分离心肌细胞的机械卸载,重点是乙酰化和 K48-寡聚-泛素化。
R00 独立阶段的目标是 (2) 表征心肌细胞中的 HDAC3 活性如何调节
α-辅肌动蛋白和 CapZ 脱乙酰化随机械负荷的变化而变化,并且 (3) 确定后的变化
在整个心脏的左心室卸载过程中 HDAC3 对肌节蛋白的翻译修饰。
该项目的创新点在于将心肌细胞力学生物学与翻译后生物学相结合
分子生物化学,了解心肌细胞如何通过
该项目的成果将扩展我们对机械刺激的反应的泛素乙酰化途径。
有关调节心肌细胞蛋白质稳态的信号通路的知识
这可能会开发出调节肥厚型心肌病和肌肉减少症的新研究路线。
除了出色的指导团队和研究之外,本提案中的职业发展活动
伊利诺伊大学芝加哥分校的环境将支持我成功过渡到职业生涯
独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Solis-Ocampo其他文献
Christopher Solis-Ocampo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Solis-Ocampo', 18)}}的其他基金
Post-translational mechanisms of cardiac adaptation during unloading
卸载过程中心脏适应的翻译后机制
- 批准号:
10199034 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
组蛋白乙酰化修饰介导Hint2调控NETosis对急性肝衰竭的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于非组蛋白乙酰化修饰探讨GSK3β/ULK1通路调控线粒体自噬对急性肝衰竭能量代谢的影响
- 批准号:82070609
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
组蛋白去乙酰化酶介导的自噬-NLRP3炎症小体轴对急性肝衰竭细胞焦亡途径的影响
- 批准号:81870413
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
自噬应激对脊髓急性损伤和修复的影响及其调控机制的研究
- 批准号:81301059
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
蛋白去乙酰化酶SIRT1对LPS诱导的肺泡巨噬细胞自噬及急性肺损伤中炎症的影响及其机制
- 批准号:81300056
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Phase I study of panobinostat in adults with sickle cell disease: novel approach to recruitment and retention
帕比司他治疗成人镰状细胞病的 I 期研究:招募和保留的新方法
- 批准号:
10420453 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Targeting gut brain-signaling to reduce cocaine seeking behaviors
针对肠道大脑信号传导以减少可卡因寻求行为
- 批准号:
10733638 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Epigenetic-metabolic aspects of alcohol use disorder and early developmental alcohol exposure
酒精使用障碍和早期发育酒精暴露的表观遗传代谢方面
- 批准号:
10745787 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: