Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
基本信息
- 批准号:10908177
- 负责人:
- 金额:$ 66.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:5&apos Untranslated Regions7-methylguanosineAnticodonBase PairingBindingBinding SitesBiochemistryBiological ModelsC-terminalCodon NucleotidesCollaborationsComplexDataDissociationEventGTP BindingGene Expression RegulationGoalsGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesInitiator CodonInitiator tRNALengthManuscriptsMessenger RNAMolecularMolecular ConformationMonitorMovementNational Institute of Child Health and Human DevelopmentOrganismPeptide Initiation FactorsPhasePositioning AttributeProcessProtein BiosynthesisProteinsRNA Cap-Binding ProteinsRNA HelicaseRNA-Binding ProteinsRNA-dependent ATPaseResearchRibosomesRoleSaccharomyces cerevisiaeScaffolding ProteinScanningSiteStructureTailTransfer RNATranslation InitiationWorkYeastseIF-4Beukaryotic initiation factor-5Bgenetic approachinorganic phosphatemolecular mechanicsrecruitstructural biologytranscriptome
项目摘要
The goal of our research group is to elucidate the molecular mechanisms underlying the initiation phase of protein synthesis in eukaryotic organisms. We use the yeast saccharomyces cerevisiae as a model system and employ a range of approaches - from genetics to biochemistry to structural biology - in collaboration with Alan Hinnebusch and Tom Devers labs at NICHD and several other research groups around the world.
Eukaryotic translation initiation is a key control point in the regulation of gene expression. It begins when an initiator methionyl tRNA (Met-tRNAi) is loaded onto the small (40S) ribosomal subunit. Met-tRNAi binds to the 40S subunit as a ternary complex (TC) with the GTP-bound form of the initiation factor eIF2. Three other factors eIF1, eIF1A and eIF3 also bind to the 40S subunit and promote the loading of the TC. The resulting 43S pre-initiation complex (PIC) is then loaded onto the 5-end of an mRNA with the aid of eIF3 and the eIF4 group of factors the RNA helicase eIF4A; the 5-7-methylguanosine cap-binding protein eIF4E; the scaffolding protein eIF4G; and the 40S subunit- and RNA-binding protein eIF4B. Both eIF4A and eIF4E bind to eIF4G and form the eIF4F complex. Once loaded onto the mRNA, the 43S PIC is thought to scan along the mRNA in search of an AUG start codon. This process is ATP-dependent and likely requires multiple RNA helicases, including the DEAD-box protein Ded1p. Recognition of the start site begins with base pairing between the anticodon of tRNAi and the AUG codon. This base pairing then triggers downstream events that commit the PIC to continuing initiation from that point on the mRNA. These events include ejection of eIF1 from its binding site on the 40S subunit, movement of the C-terminal tail (CTT) of eIF1A, and release of phosphate from eIF2, which converts it to its GDP-bound state. In addition, the initiator tRNA moves from a position that is not fully engaged in the ribosomal P site (termed P(OUT)) to one that is (P(IN)) and the PIC as a whole converts from an open conformation that is conducive for scanning to a closed one that is not. At this stage eIF2-GDP dissociates from the PIC and eIF1A and a second GTPase factor, eIF5B, coordinate joining of the large ribosomal subunit to form the 80S initiation complex. eIF5B hydrolyzes GTP, which appears to result in a conformational reorganization of the complex, and then dissociates along with eIF1A.
We have been employing our transcriptome-wide approach to monitoring mRNA recruitment to 43S PICs and subsequent scanning to locate the start codon, RecSeq, to study the translation initiation process. We have finalized our studies of the function and mechanism of the DEAD-box RNA-dependent ATPase Ded1 in translation initiation and are finishing a manuscript describing this work. Our studies show that Ded1 acts to promote mRNA recruitment and scanning on mRNAs that have long, structured 5'-untranslated regions. Our data also indicate that Ded1 and another DEAD-box translation initiation factor eIF4A perform distinct roles in translation initiation, with the latter promoting recruitment of all mRNAs, regardless of 5'-untranslated region length or structure.
我们研究小组的目标是阐明真核生物蛋白质合成起始阶段的分子机制。我们使用酿酒酵母作为模型系统,并与 NICHD 的 Alan Hinnebusch 和 Tom Devers 实验室以及世界各地的其他几个研究小组合作,采用了从遗传学到生物化学到结构生物学的一系列方法。
真核翻译起始是基因表达调控的关键控制点。当起始子甲硫氨酰 tRNA (Met-tRNAi) 被加载到小 (40S) 核糖体亚基上时,它就开始了。 Met-tRNAi 以三元复合物 (TC) 的形式与 40S 亚基与起始因子 eIF2 的 GTP 结合形式结合。其他三个因子 eIF1、eIF1A 和 eIF3 也与 40S 亚基结合并促进 TC 的加载。然后,借助 eIF3 和 eIF4 因子(RNA 解旋酶 eIF4A),将所得 43S 前起始复合物 (PIC) 加载到 mRNA 的 5 端; 5-7-甲基鸟苷帽结合蛋白 eIF4E;支架蛋白 eIF4G;以及 40S 亚基和 RNA 结合蛋白 eIF4B。 eIF4A 和 eIF4E 均与 eIF4G 结合并形成 eIF4F 复合物。一旦加载到 mRNA 上,43S PIC 就会沿着 mRNA 扫描以寻找 AUG 起始密码子。该过程依赖于 ATP,并且可能需要多个 RNA 解旋酶,包括 DEAD-box 蛋白 Ded1p。起始位点的识别从 tRNAi 的反密码子和 AUG 密码子之间的碱基配对开始。然后,这种碱基配对会触发下游事件,使 PIC 从 mRNA 上的该点继续启动。这些事件包括 eIF1 从 40S 亚基上的结合位点弹出、eIF1A C 末端尾部 (CTT) 的运动以及 eIF2 释放磷酸盐,从而将其转化为 GDP 结合状态。此外,起始子 tRNA 从未完全参与核糖体 P 位点的位置(称为 P(OUT))移动到 (P(IN)),并且 PIC 作为一个整体从开放构象转变为有利于扫描到一个不封闭的。在此阶段,eIF2-GDP 从 PIC 和 eIF1A 解离,第二个 GTP 酶因子 eIF5B 协调大核糖体亚基的连接,形成 80S 起始复合物。 eIF5B 水解 GTP,这似乎会导致复合物的构象重组,然后与 eIF1A 一起解离。
我们一直在采用全转录组方法来监测 43S PIC 的 mRNA 募集,并随后扫描以定位起始密码子 RecSeq,以研究翻译起始过程。我们已经完成了对 DEAD-box RNA 依赖性 ATPase Ded1 在翻译起始中的功能和机制的研究,并正在完成描述这项工作的手稿。我们的研究表明,Ded1 可以促进 mRNA 募集和扫描具有长、结构化 5'-非翻译区的 mRNA。我们的数据还表明,Ded1 和另一个 DEAD-box 翻译起始因子 eIF4A 在翻译起始中发挥着不同的作用,后者促进所有 mRNA 的募集,无论 5'-非翻译区长度或结构如何。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein Affinity Purification using Intein/Chitin Binding Protein Tags.
使用内含肽/几丁质结合蛋白标签进行蛋白质亲和纯化。
- DOI:10.1016/bs.mie.2014.11.002
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Sarah F. Mitchell;J. Lorsch
- 通讯作者:J. Lorsch
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Lorsch其他文献
Jon Lorsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Lorsch', 18)}}的其他基金
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10471708 - 财政年份:
- 资助金额:
$ 66.96万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
8941570 - 财政年份:
- 资助金额:
$ 66.96万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10266534 - 财政年份:
- 资助金额:
$ 66.96万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10685193 - 财政年份:
- 资助金额:
$ 66.96万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10266534 - 财政年份:
- 资助金额:
$ 66.96万 - 项目类别:
相似海外基金
Molecular mechanism of 4E-binding proteins on heart failure development
4E结合蛋白对心力衰竭发展的分子机制
- 批准号:
8666798 - 财政年份:2011
- 资助金额:
$ 66.96万 - 项目类别: