Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
基本信息
- 批准号:10742205
- 负责人:
- 金额:$ 24.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-03 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntimalarialsArtemisininsBiologicalBiological AssayBiologyBloodBlood CellsCellsCessation of lifeChemical StructureChloroquineChloroquine resistanceCompetenceComputer ModelsDataDevelopmentDiseaseDiversity LibraryDrug KineticsDrug resistanceEffectivenessErythrocytesEvaluationEvolutionFutureGoalsGrantGrowthHepG2HepatocyteIn VitroInfectionInvadedLeadLibrariesLifeLife Cycle StagesLiverLiver MicrosomesMachine LearningMalariaMalignant NeoplasmsMeasuresModelingMolecularMusOrganic SynthesisParasite resistanceParasitesPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhysiciansPlasmodiumPlasmodium falciparumProbabilityProductivityPropertyProphylactic treatmentPublicationsPyrimethamineReportingResearch PersonnelResistanceResourcesRiskSolubilitySulfadoxineSymptomsTechnologyTestingTherapeuticTimeTrainingTriageValidationanalogaqueouscandidate identificationcostcost efficientcytotoxicitydesigndisorder controldrug developmentdrug discoveryefficacy evaluationexperienceheuristicshigh throughput screeninghuman diseasein vivoinhibitorinnovationmachine learning methodmachine learning modelmachine learning predictionmalaria infectionmeetingsnew therapeutic targetnovelnovel strategiesnovel therapeutic interventionnovel therapeuticspathogenpreventprophylacticrandom forestscreeningskillssmall moleculestatisticstooltransmission process
项目摘要
PROJECT SUMMARY
Specifically, this proposal focuses on novel new small molecules that inhibit both the blood and liver
stages of malaria infection. The causative pathogen – Plasmodium spp. – was responsible for 241,000,000 cases
that resulted in 627,000 deaths in 2020. Plasmodium spp. drug-resistant infections leave few good choices for
physicians and put at risk the productivity and the lives of those infected. A clear case has been made for new
drugs to treat these infections through the discovery and development of novel therapeutic strategies. These
strategies would optimally be dual stage, targeting the blood stage for treatment and the liver stage for
prophylaxis.
The innovative strategy in this proposal builds on the technology of machine learning models for the
prediction of novel dual-stage antimalarial small molecules with significant potential as drug discovery entities.
Such a computational approach to seed the discovery of small molecule malaria parasite inhibitors with dual-
stage efficacy has only been reported by us in 2022. The approach begins with preliminary data around two novel
antimalarial small molecules with demonstrated in vitro efficacy versus both blood and liver stages of Plasmodium
spp. infection and a lack of significant cytotoxicity to cultured liver cells. These molecules were derived from a
set of hits discovered with a random forest model trained with high-throughput screening data. The molecules
are representative of novel chemotypes for dual-stage antimalarials and, thus, offer a high probability of
modulating new targets that are critical throughout the parasite’s lifecycle. This initial machine learning effort will
be significantly expanded with a range of model types and a different and larger commercial library to predict a
set of new hit compounds.
Two validated hits, meeting in vitro efficacy and cytotoxicity criteria and maintaining wild type in vitro
efficacy versus a set of drug-resistant parasite strains, will be profiled for key molecular properties such as mouse
liver microsomal stability, aqueous solubility, and mouse pharmacokinetic profile. These data along with the
existing in vitro efficacy and cytotoxicity evaluations will guide the evolution of each hit with a goal of preparing
one or more analogs with a composite profile to enable downstream in vivo efficacy evaluation in infection
models. A novel combination of medicinal chemistry and machine learning will be leveraged to afford such
molecules.
项目概要
具体来说,该提案重点关注抑制血液和肝脏的新型小分子
疟疾感染的病原体——疟原虫——导致了 241,000,000 例病例。
2020 年,导致 627,000 人死亡。疟原虫感染几乎没有什么好的选择。
医生的工作效率和感染者的生命都处于危险之中,这是一个明显的案例。
通过药物发现和开发新的治疗策略来治疗这些感染。
最佳策略是双阶段,针对血液阶段进行治疗,针对肝脏阶段进行治疗
预防。
该提案中的创新策略建立在机器学习模型技术的基础上
预测具有作为药物发现实体的巨大潜力的新型双阶段抗疟小分子。
这种计算方法为发现具有双重功能的小分子疟疾寄生虫抑制剂奠定了基础
我们直到 2022 年才报告了阶段功效。该方法从两部小说的初步数据开始
抗疟小分子,对疟原虫的血液阶段和肝脏阶段均具有体外功效
spp.感染并且对培养细胞缺乏显着的肝细胞毒性。
使用高通量筛选数据训练的随机森林模型发现的一组命中结果。
是双阶段抗疟药新化学型的代表,因此,提供了很高的可能性
调节在寄生虫整个生命周期中至关重要的新目标。
通过一系列模型类型和不同的、更大的商业库来显着扩展,以预测
一组新的热门化合物。
两个经过验证的命中,满足体外功效和细胞毒性标准并在体外维持野生型
与一组耐药寄生虫菌株相比的功效,将针对关键分子特性进行分析,例如小鼠
肝微粒体稳定性、水溶性和小鼠药代动力学特征。
现有的体外功效和细胞毒性评估将指导每个命中的进化,目标是准备
具有复合特征的一种或多种类似物,以实现感染中的下游体内功效评估
将利用药物化学和机器学习的新颖组合来提供此类模型。
分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily R Derbyshire其他文献
Emily R Derbyshire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily R Derbyshire', 18)}}的其他基金
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
- 批准号:
10734886 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Enabling Host Processes for Defense Against Liver Stage Malaria Infection
启用主机进程防御肝期疟疾感染
- 批准号:
9348873 - 财政年份:2017
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8878462 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8443165 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
9100871 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8627185 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
9100871 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
- 批准号:
8465300 - 财政年份:2010
- 资助金额:
$ 24.64万 - 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
- 批准号:
8045421 - 财政年份:2010
- 资助金额:
$ 24.64万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding Microbial Diversity in the Human Gut Microbiome
解码人类肠道微生物组中的微生物多样性
- 批准号:
10713170 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10663334 - 财政年份:2022
- 资助金额:
$ 24.64万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10533634 - 财政年份:2022
- 资助金额:
$ 24.64万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10663334 - 财政年份:2022
- 资助金额:
$ 24.64万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10162548 - 财政年份:2020
- 资助金额:
$ 24.64万 - 项目类别: