Administration
行政
基本信息
- 批准号:10907216
- 负责人:
- 金额:$ 23.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-04 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdvisory CommitteesAffectAlgorithmsAreaBehavioral ModelBig Data to KnowledgeBindingBiomechanicsBiomedical TechnologyCellular PhoneCerebral PalsyCharacteristicsClinicClinicalCommunicationComputer ModelsComputer softwareConsultationsDataDegenerative polyarthritisDevelopmentDiagnosisDiseaseEffectivenessElementsExerciseFaceFundingFutureGaitGeographyGoalsImageIndividualInstitutionJointsLeadLeadershipLocomotionMagnetic Resonance ImagingMeasurementMeasuresMetabolicMethodologyModelingMonitorMotionMovementMuscleNational Institute of Biomedical Imaging and BioengineeringObesityParkinson DiseasePatientsPersonsRecordsRehabilitation OutcomeRehabilitation therapyResearchResearch PersonnelResourcesRunningSeriesServicesStructureTechnologyTestingTimeTrainingUnited States National Institutes of HealthUniversitiesWorkbiomedical data sciencecomputerized toolscostexperiencefunctional improvementhealth goalsimprovedimproved mobilityindividualized medicineinnovationinsightkinematicsmachine learning modelmeetingsmobile sensingmobile sensormultidimensional dataprogramsrecruitrehabilitation researchsensor technologysimulationskillssocietal coststechnology research and developmentterabytetoolusabilitywearable sensor technology
项目摘要
Limited mobility due to conditions like osteoarthritis (OA), cerebral palsy, and Parkinson’s disease affects
millions of individuals, at enormous personal and societal cost. Rehabilitation can dramatically improve mobility
and function, but current rehabilitation practice requires in-person guidance by a skilled clinician, increasing
expense and limiting access. Mobile sensing technologies are now ubiquitous and have the potential to
measure patient function and guide treatment outside the clinic, but they currently fail to capture the
characteristics of motion required to accurately monitor function and customize treatment. Millions of low-cost
mobile sensors are generating terabytes of data that could be analyzed in combination with other data, such as
images, clinical records, and video, to enable studies of unprecedented scale, but machine learning models for
analyzing these large-scale, heterogeneous, time-varying data are lacking.
To address these challenges, we will establish a Biomedical Technology Resource Center —The Mobilize
Center. Through the leadership of an experienced scientific team, we will create and disseminate innovative
tools to quantify movement biomechanics with mobile sensors.
Specifically, we will:
1. Push the bounds of what we can measure via wearable sensors using models that compute muscle
and joint forces and metabolic cost of locomotion. These models, based on biomechanical and machine
learning models, will be disseminated via our newly created OpenSense software, which will be used
by thousands of researchers to gain new insights into patient biomechanics using mobile sensors.
2. Meet the need for tools that analyze data about movement dynamics and develop machine learning
models to analyze and generate insights from unstructured, high-dimensional data, including time-
series (e.g., from mobile sensors), images (e.g., MRI), and video (e.g., smartphone video of a patient’s
gait).
3. Provide tools needed to intervene in the real-world. We will develop algorithms to accurately quantify
kinematics outside the lab for long durations using data from inertial measurement units (IMUs). We will
also build behavioral models to adapt and personalize goal setting, drawing on movement records from
6 million individuals, as well as health goals and exercise for 1.7 million people.
Through intensive interactions with our Collaborative Projects, we will focus on improving rehabilitation
outcomes for individuals with limited mobility due to osteoarthritis, obesity, Parkinson’s disease, and cerebral
palsy. The Center’s tools and services will enable researchers to revolutionize how we diagnose, monitor, and
treat mobility disorders, providing tools needed to deliver precision rehabilitation at low cost and on a massive
scale in the future.
骨关节炎 (OA)、脑瘫和帕金森病等疾病导致的活动受限会影响
康复可以极大地改善数百万人的流动性,但需要付出巨大的个人和社会成本。
和功能,但目前的康复实践需要熟练临床医生的亲自指导,这增加了
移动传感技术现在无处不在,并且有潜力。
在诊所外测量患者功能和治疗指南,但目前无法捕捉到
精确监测功能和定制治疗所需的运动特征数以百万计的低成本。
移动传感器正在生成数 TB 的数据,这些数据可以与其他数据结合进行分析,例如
图像、临床记录和视频,以实现前所未有的规模研究,但机器学习模型
缺乏对这些大规模、异构、时变数据的分析。
为了应对这些挑战,我们将建立一个生物医学技术资源中心——The Mobilize
通过经验丰富的科学团队的领导,我们将创造和传播创新成果。
使用移动传感器量化运动生物力学的工具。
具体来说,我们将:
1. 使用计算肌肉的模型突破我们可以通过可穿戴传感器测量的范围
这些模型基于生物力学和机器。
学习模型将通过我们新创建的 OpenSense 软件进行传播,该软件将用于
由数千名研究人员使用移动传感器获得对患者生物力学的新见解。
2. 满足对分析运动动态数据和开发机器学习的工具的需求
用于分析非结构化、高维数据(包括时间数据)并生成见解的模型
系列(例如,来自移动传感器)、图像(例如,MRI)和视频(例如,患者的智能手机视频)
步态)。
3. 提供干预现实世界所需的工具我们将开发准确量化的算法。
我们将使用惯性测量单元 (IMU) 的数据在实验室外进行长时间的运动学分析。
还建立行为模型来适应和个性化目标设定,利用来自的运动记录
600 万人,以及 170 万人的健康目标和锻炼。
通过与我们的合作项目的深入互动,我们将专注于改善康复
因骨关节炎、肥胖、帕金森病和脑血管病而行动受限的人的结果
该中心的工具和服务将使研究人员能够彻底改变我们的诊断、监测和治疗方式。
治疗行动障碍,提供以低成本和大规模进行精准康复所需的工具
未来规模化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT L DELP其他文献
SCOTT L DELP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT L DELP', 18)}}的其他基金
Mobilize Center: Models for Mobile Sensing and Precision Rehabilitation
移动中心:移动传感和精准康复模型
- 批准号:
10581468 - 财政年份:2020
- 资助金额:
$ 23.16万 - 项目类别:
Center for Reliable Sensor Technology-Based Outcomes for Rehabilitation (RESTORE)
基于可靠传感器技术的康复成果中心 (RESTORE)
- 批准号:
10405585 - 财政年份:2020
- 资助金额:
$ 23.16万 - 项目类别:
Center for Reliable Sensor Technology-Based Outcomes for Rehabilitation (RESTORE)
基于可靠传感器技术的康复成果中心 (RESTORE)
- 批准号:
10645099 - 财政年份:2020
- 资助金额:
$ 23.16万 - 项目类别:
Center for Reliable Sensor Technology-Based Outcomes for Rehabilitation (RESTORE)
基于可靠传感器技术的康复成果中心 (RESTORE)
- 批准号:
10155572 - 财政年份:2020
- 资助金额:
$ 23.16万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Neurosurgeon Research Career Development Program (NRCDP)
神经外科医生研究职业发展计划 (NRCDP)
- 批准号:
10787021 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Global Center on Climate Change and Water Energy Food Health Systems - Community Engagement Core
全球气候变化和水能源食品卫生系统中心 - 社区参与核心
- 批准号:
10835680 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别: