Substance Use Disorder Artificially Intelligent chatbot for screening, assessment & referral: SUD Bot
用于筛查、评估的药物使用障碍人工智能聊天机器人
基本信息
- 批准号:10757191
- 负责人:
- 金额:$ 30.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-08-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAppointmentAppointments and SchedulesArtificial IntelligenceArtificial Intelligence platformBehaviorBehavior TherapyBehavioralBody Weight decreasedCaringCessation of lifeChronic DiseaseClinicColoradoCommunicationCommunitiesDataDecision MakingDiagnosisDrug usageEducationElectronic Health RecordEquityEvolutionExpert SystemsFDA approvedFee-for-Service PlansFeedbackFundingGoalsGroup InterviewsHealthHealth SciencesHealth Services AccessibilityHealth behaviorHealthcareHumanImprove AccessInformation SystemsInfrastructureIntentionInternetInterventionInterviewLinkMachine LearningMeasuresMedicalMedical DeviceMedicare/MedicaidMethamphetamineNational Heart, Lung, and Blood InstituteNatural Language ProcessingOpioidOutcomeOverdosePatientsPersonsPharmaceutical PreparationsPhasePrivatizationProfessional counselorProviderPublic HealthRecording of previous eventsRecoveryReminder SystemsResearchResourcesScheduleScienceSecureServicesSmall Business Technology Transfer ResearchStimulantSubstance Use DisorderSystemTestingTexasText MessagingUnited States National Institutes of HealthUnited States Preventative Services Task ForceUniversitiesVoiceWorkaccurate diagnosisagedbarrier to carechatbotcocaine usecommercializationdata miningdesigneffective therapyfallsfeasibility testingfirewallfollow-uphealth assessmenthealth care deliveryhealth communicationhealth equityillicit drug useimprovedinnovationmachine learning modelmedication compliancemembermethamphetamine usemultiple drug usenew technologynext generationnovel therapeuticsopioid epidemicpeerpeer supportphase 1 studyrandomized, clinical trialsrecovery servicesrecruitresponsesatisfactionscreeningscreening guidelinesservice deliverysmoking cessationsocialsocial stigmastimulant usesuccesssupportive environmenttoolusability
项目摘要
ABSTRACT
The opioid epidemic is considered one of the most severe public health crises we are facing in
the U.S. and is worsened by use of stimulants such as methamphetamine. The US Preventive
Services Task Force (USPSTF) recommends screening for unhealthy drug use accompanied by
offers of and referrals to services that include accurate diagnosis, effective treatment and
appropriate care of a substance use disorder (SUD) for persons aged 18 and older. Automating
screening and assessment for SUD and removing stigmas and other barriers to treatment can
improve the scale, efficiency, and equitable access to SUD care. While artificial intelligence (AI)
chatbots using natural language processing (NLP) and Machine Learning (ML) are increasingly
common, they (a) fall short of systems that mimic social conversations with persuasive
responses to motivate action (b) are not interoperable with service delivery to link users
immediately with clinic appointments and (c) aren’t FDA approved under mandates to regulate
medical devices that complete assessments for medical outcomes. Specific to SUD, there is a
compelling need for AI chatbots that minimize stigma associated with SUD care and resources.
In this Phase I STTR, Clinic Chat, LLC, will build on prior research showing the success of their
chatbots to support improved access to chronic illness medication in partnership with Be Well
Texas, a provider of SUD services to develop and beta-test the feasibility, navigability, and
acceptability of using a next generation AI chatbot, called SUD Bot, to facilitate access to and
utilization of SUD services and resources. We aim to 1: Enhance existing Clinic Chat AI
Chatbots with (a) persuasive SUD screening and treatment messaging and (b) infrastructure
with capacity to simulate human conversation and be accessible in English and Spanish via
multiple platforms, i.e., text messaging, including voice and video; 2: Build fast healthcare
interoperative resource (FHIR) linkages that will allow users to self-schedule appointments
for treatment or to access peer support through the recovery network within Be Well Texas; and
3: Conduct a beta-test to determine the functionality and navigability of the FHIR-enabled
SUD Bot system. We will recruit 200 users to use the FHIR-enabled SUD Bot system in three
weeklong waves interspersed with iterative system refinement based on user feedback.
Completion of this Phase I study will generate an FHIR-enabled minimum viable product (MVP)
with initial functionality and navigability feedback ready for a Phase II STTR randomized clinical
trial testing system efficacy. Our goal is to have an effective and scalable tool that can be
adapted for use in any organization delivering SUD services and commercialized through fees
for service or Medicaid/Medicare reimbursement.
抽象的
阿片类药物流行被认为是我们面临的最严重的公共卫生危机之一
在美国,使用甲基苯丙胺等兴奋剂会使病情恶化。
服务工作组 (USPSTF) 建议对不健康药物使用情况进行筛查,同时
提供和转介服务,包括准确的诊断、有效的治疗和
对 18 岁及以上的物质使用障碍 (SUD) 患者进行适当护理。
SUD 的筛查和评估以及消除耻辱和其他治疗障碍可以
提高 SUD 护理的规模、效率和公平性。
使用自然语言处理 (NLP) 和机器学习 (ML) 的聊天机器人越来越多
常见的是,它们(a)缺乏模仿具有说服力的社交对话的系统
对激励行动 (b) 的响应不能与链接用户的服务提供互操作
立即进行诊所预约,并且 (c) 未经 FDA 根据监管授权批准
针对 SUD 完成医疗结果评估的医疗设备。
迫切需要人工智能聊天机器人来最大限度地减少与 SUD 护理和资源相关的耻辱。
在第一阶段 STTR 中,Clinic Chat, LLC 将基于先前的研究,展示其成功的
与 Be Well 合作,聊天机器人支持改善慢性病药物的获取
德克萨斯州,一家 SUD 服务提供商,负责开发和测试可行性、适航性和
使用下一代人工智能聊天机器人(称为 SUD Bot)的可接受性,以促进访问和
利用 SUD 服务和资源我们的目标是 1:增强现有的诊所聊天人工智能。
具有 (a) 有说服力的 SUD 筛查和治疗消息传递以及 (b) 基础设施的聊天机器人
能够模拟人类对话,并可以通过英语和西班牙语访问
2:建立快速医疗保健
互操作资源 (FHIR) 链接将允许用户自行安排预约
通过 Be Well Texas 内的康复网络进行治疗或获得同伴支持;以及
3:进行 Beta 测试以确定启用 FHIR 的功能和导航性
SUD Bot 系统将分三期招募 200 名用户使用支持 FHIR 的 SUD Bot 系统。
为期一周的波浪中穿插着基于用户反馈的迭代系统细化。
完成第一阶段研究将生成支持 FHIR 的最小可行产品 (MVP)
具有初始功能和导航性反馈,为 II 期 STTR 随机临床做好准备
我们的目标是拥有一个有效且可扩展的工具,可以
适合在任何提供 SUD 服务的组织中使用并通过收费进行商业化
服务或医疗补助/医疗保险报销。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHEANA S BULL其他文献
SHEANA S BULL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHEANA S BULL', 18)}}的其他基金
Using artificially intelligent text messaging technology to improve American Heart Association's Life's Simple 7 Health Behaviors: LS7 Bot + Backup
利用人工智能短信技术改善美国心脏协会的生活简单7个健康行为:LS7 Bot Backup
- 批准号:
10649884 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
10448390 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
9750927 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
10200136 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Text Messaging for Abstinence and HIV Risk Prevention
用于禁欲和艾滋病毒风险预防的短信
- 批准号:
7501978 - 财政年份:2007
- 资助金额:
$ 30.05万 - 项目类别:
Text Messaging for Abstinence and HIV Risk Prevention
用于禁欲和艾滋病毒风险预防的短信
- 批准号:
7336217 - 财政年份:2007
- 资助金额:
$ 30.05万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
- 批准号:
10900991 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Automated system to improve compliance to diabetic retinopathy screening
自动化系统可提高糖尿病视网膜病变筛查的依从性
- 批准号:
10697609 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Automated system to improve compliance to diabetic retinopathy screening
自动化系统可提高糖尿病视网膜病变筛查的依从性
- 批准号:
10697609 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别: