Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
基本信息
- 批准号:10740025
- 负责人:
- 金额:$ 42.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-08-14
- 项目状态:未结题
- 来源:
- 关键词:CRISPR/Cas technologyCardiacCardiac MyocytesCell ProliferationCellsCharacteristicsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCustomDNA RepairDNA Repair GeneDependovirusDevelopmentEnabling FactorsEnsureEpigenetic ProcessGene ExpressionGene Transduction AgentGenesGenetic DiseasesGenetic ScreeningGenomic DNAGenomicsHepatocyteHumanIn VitroKnock-outKnockout MiceLibrariesMeasurementMeasuresMediatingMethodologyMethodsMitoticModificationMolecularMusMutationNaturePathway interactionsProteinsRegulator GenesReportingResourcesRoleSafetySiteSystemTechnologyTestingTherapeuticTimeTissuesViral Genomeadeno-associated viral vectorcellular transductionclinical translationgenetic variantgenome editinggenome sequencingimprovedin vivoinsightknockout geneloss of functionmodel organismnext generation sequencingnovelpostmitoticprecise genome editingprogramsrepairedscreeningsoundtooltool development
项目摘要
Abstract
Genome sequencing efforts are increasingly revealing gene variants that disrupt tissue development
and function. Therapies for genetic disorders are currently limited by our inability to make precise and
permanent adjustments to dysfunctional genes and associated regulatory programs. However, CRISPR/Cas9-
based genome editing is proving to be a powerful gene regulatory tool with tremendous therapeutic potential.
One particularly promising approach is the use of adeno-associated virus (AAV) to deliver CRISPR/Cas9
components as well as a template for homology directed repair (HDR; AAV-HDR). In vitro AAV-HDR efficiency
can be spectacularly high, with >90% of transduced cells correctly edited in some cases, while in vivo studies
have demonstrated more modest, and highly variable, results. To successfully employ AAV-HDR in a
therapeutic setting, its efficiency will need to be optimized. In addition, a robust understanding of AAV-HDR
mechanisms will be necessary to ensure safety. Unfortunately, efforts to study and improve AAV-HDR have
been severely hampered by a lack of tools that allow for high-throughput, systematic analyses. Hypothesis:
Development of high-throughput methodologies for measuring in vivo AAV-HDR editing efficiency will enable
rapid discovery of the underlying molecular mechanisms and facilitate optimization necessary for clinical
translation.
This proposal will develop and deploy the tools necessary for rapid, systematic refinement of in vivo
AAV-HDR. In Aim 1, using mice as a model organism, we will develop a method for simultaneously measuring
AAV-HDR efficiency at many target loci. We will investigate the locus-dependent variability of AAV-HDR
efficiency by utilizing the system to analyze the relationship between efficiency and target locus chromatin
state in cardiomyocytes. In Aim 2, we will develop a high-throughput method, based on a pooled CRISPR-
knockout screen, for assessing the impact of gene perturbations on cardiac AAV-HDR efficiency. We will use
the system to gain insights into the molecular mechanism of AAV-HDR, by identifying DNA-repair factors that
are necessary for successful gene editing.
AAV-HDR can occur at high efficiency within heart muscle cells, although efficiency varies dramatically
by target locus. Here we propose development of two systems that will leverage next-generation sequencing to
make many parallel measurements of AAV-HDR efficiency. To our knowledge, both systems will be the first of
their kind. Our use of these systems will lead to key conceptual advances in understanding the mechanisms
underlying AAV-HDR. We anticipate that these technical and conceptual advances will promote development
of AAV-HDR based therapies.
抽象的
基因组测序工作越来越多地揭示破坏组织发育的基因变异
和功能。目前,遗传性疾病的治疗方法因我们无法做出精确而有效的治疗而受到限制。
对功能失调的基因和相关调控程序进行永久性调整。然而,CRISPR/Cas9-
基于基因组编辑被证明是一种强大的基因调控工具,具有巨大的治疗潜力。
一种特别有前途的方法是使用腺相关病毒 (AAV) 来传递 CRISPR/Cas9
组件以及同源定向修复模板(HDR;AAV-HDR)。体外 AAV-HDR 效率
可能非常高,在某些情况下,>90% 的转导细胞被正确编辑,而体内研究
已表现出更为温和且高度可变的结果。成功地在 AAV-HDR 中应用
治疗环境,其效率需要优化。此外,对 AAV-HDR 有深入的了解
需要有机制来确保安全。不幸的是,研究和改进 AAV-HDR 的努力并没有取得进展。
由于缺乏可进行高通量、系统分析的工具而受到严重阻碍。假设:
开发用于测量体内 AAV-HDR 编辑效率的高通量方法将使得
快速发现潜在的分子机制并促进临床所需的优化
翻译。
该提案将开发和部署快速、系统地改进体内实验所需的工具。
AAV-HDR。在目标 1 中,我们将使用小鼠作为模型生物,开发一种同时测量的方法
许多目标位点的 AAV-HDR 效率。我们将研究 AAV-HDR 的位点依赖性变异
利用该系统分析效率与目标位点染色质之间的关系
心肌细胞中的状态。在目标 2 中,我们将开发一种基于汇集 CRISPR 的高通量方法
敲除筛选,用于评估基因扰动对心脏 AAV-HDR 效率的影响。我们将使用
该系统通过识别 DNA 修复因子来深入了解 AAV-HDR 的分子机制
是成功基因编辑所必需的。
AAV-HDR 可以在心肌细胞内高效发生,尽管效率差异很大
通过目标位点。在这里,我们建议开发两个系统,利用下一代测序来
对 AAV-HDR 效率进行多次并行测量。据我们所知,这两个系统都将是第一个
他们的同类。我们对这些系统的使用将导致理解机制方面的关键概念进步
底层 AAV-HDR。我们预计这些技术和概念的进步将促进发展
基于 AAV-HDR 的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan James VanDusen其他文献
Nathan James VanDusen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan James VanDusen', 18)}}的其他基金
Functional dissection of the regulatory network that governs cardiomyocyte maturation
控制心肌细胞成熟的调节网络的功能剖析
- 批准号:
10629491 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation
控制心肌细胞成熟的调节网络的功能剖析
- 批准号:
10686262 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation
控制心肌细胞成熟的调节网络的功能剖析
- 批准号:
10629491 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation.
控制心肌细胞成熟的调节网络的功能剖析。
- 批准号:
10348401 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Functional dissection of the regulatory network that governs cardiomyocyte maturation.
控制心肌细胞成熟的调节网络的功能剖析。
- 批准号:
9918961 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Identification and analysis of factors that regulate cardiomyocyte maturation
心肌细胞成熟调节因素的鉴定与分析
- 批准号:
9379399 - 财政年份:2016
- 资助金额:
$ 42.53万 - 项目类别:
相似国自然基金
成年心脏内源性再生损伤心肌细胞的调控机理研究
- 批准号:82370245
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成纤维细胞分泌炎性因子增加心肌细胞易损性在阿霉素累积心脏毒性中的作用及机制研究
- 批准号:82370363
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于ALKBH5介导FoxO3 m6A修饰调控心肌细胞线粒体融合-分裂探究益气温阳法防治脓毒症心脏功能障碍的机制
- 批准号:82305225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LncRNA-CIR通过CDK1诱导MSCs为心肌细胞的作用对梗死心脏的修复研究
- 批准号:82360065
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PFOS通过PGC1-a介导线粒体代谢重编程抑制心肌细胞分化和心脏发育的机制研究
- 批准号:82373529
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别:
Probing the Molecular Mechanisms of Diastolic Dysfunction Using Patient-Specific Stem Cells
利用患者特异性干细胞探讨舒张功能障碍的分子机制
- 批准号:
10739782 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别:
Role of RAF1 in human cardiogenesis and congenital heart defects
RAF1 在人类心脏发生和先天性心脏缺陷中的作用
- 批准号:
10930198 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别:
Muscle-Specific CRISPR/Cas9 Exon Skipping for Duchenne Muscular Dystrophy Therapeutics
肌肉特异性 CRISPR/Cas9 外显子跳跃用于杜氏肌营养不良疗法
- 批准号:
10679199 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别:
From Variants to Mechanisms for Cardiac Arrhythmias
从心律失常的变异到机制
- 批准号:
10719850 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别: