Revealing how cytoskeletal dynamics form the early mammalian embryo

揭示细胞骨架动力学如何形成早期哺乳动物胚胎

基本信息

  • 批准号:
    10624808
  • 负责人:
  • 金额:
    $ 50.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

SUMMARY Revealing the key events that specify the first differentiated cell lineages during mammalian development is key to understand how the early embryo is organized to implant in the uterus and establish a pregnancy. The first mammalian cell lineages comprise the pluripotent inner cell mass (ICM) that will form the fetus, and the outer trophectoderm that will form the placenta. Yet, the mechanisms explaining how these lineages differentiate are unclear. In many non-mammalian embryos, asymmetrically inherited cell-fate determinants specify lineage fate, yet similar mechanisms are thought to be absent during early mammalian development. We have established live-imaging approaches to study cell and molecular dynamics during early mouse development. Recently, we identified a new role for intermediate filaments assembled by keratins in lineage specification. Our studies reveal that keratin filaments are asymmetrically inherited precisely during the cell divisions that physically segregate the future ICM and trophectoderm. Moreover, the inheritance of these filaments by the outer daughter cells helps to specify their trophectoderm identity and promote their maturation. Thus, our main hypothesis is that keratin filaments function as a new form of asymmetrically inherited factor specifying the first trophectoderm cells during development. To test this, we will reveal the mechanisms by which keratins become asymmetrically inherited (Aim 1) and can bias cell fate (Aim 2). We will first test how interactions with proteins present at the apical cell cortex, and the dynamics of the filaments inside the cell, control their asymmetric inheritance by outer cells during cell division. We will then determine how keratins can regulate key aspects of cell mechanics and polarity to control the distribution of the key transcription factors that specify trophectoderm fate. In summary, in this proposal we will address a fundamental open question about the specification of the first differentiated cell lineages during mammalian development, and unveil some of the first functions of keratin intermediated filaments during early mammalian development, which unlike those of other cytoskeletal elements like microtubules and actin, remain largely unknown.
概括 揭示哺乳动物发育过程中第一个分化细胞谱系的关键事件是关键 了解早期胚胎如何组织植入子宫并建立妊娠。第一个 哺乳动物细胞谱系包括将形成胎儿的多能内细胞团(ICM)和外细胞团 将形成胎盘的滋养外胚层。然而,解释这些谱系如何分化的机制是 不清楚。在许多非哺乳动物胚胎中,不对称遗传的细胞命运决定因素指定了谱系命运, 然而,人们认为在早期哺乳动物发育过程中不存在类似的机制。 我们已经建立了实时成像方法来研究早期小鼠的细胞和分子动力学 发展。最近,我们发现了角蛋白组装的中间丝在谱系中的新作用 规格。我们的研究表明,角蛋白丝​​在细胞内精确地不对称遗传 在物理上将未来的 ICM 和滋养外胚层分开。而且,这些传承 外部子细胞的细丝有助于确定其滋养外胚层的身份并促进其成熟。 因此,我们的主要假设是角蛋白丝作为一种新形式的不对称遗传因子发挥作用 指定发育过程中的第一个滋养外胚层细胞。为了测试这一点,我们将揭示其机制 角蛋白变得不对称遗传(目标 1)并可能使细胞命运发生偏差(目标 2)。 我们将首先测试与顶端细胞皮质中存在的蛋白质的相互作用,以及细丝的动力学 在细胞内部,在细胞分裂过程中通过外部细胞控制其不对称遗传。然后我们将确定如何 角蛋白可以调节细胞力学和极性的关键方面,以控制关键转录的分布 指定滋养外胚层命运的因素。 总之,在这个提案中,我们将解决一个关于第一个规范的基本开放问题 在哺乳动物发育过程中分化的细胞谱系,并揭示了角蛋白的一些最初功能 哺乳动物早期发育过程中的中间丝,与其他细胞骨架元件不同 像微管和肌动蛋白一样,仍然很大程度上未知。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolas Daniel Plachta其他文献

Nicolas Daniel Plachta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolas Daniel Plachta', 18)}}的其他基金

Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
  • 批准号:
    10378489
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
  • 批准号:
    10117399
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10100123
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10266102
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10470177
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:

相似国自然基金

胞裂蛋白Sep4介导菌丝顶端多极性生长调控灰葡萄孢侵染垫起始发育的机制
  • 批准号:
    32372489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
  • 批准号:
    32300637
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同高度木本竹子因持续干旱而顶端枯死的生理机制
  • 批准号:
    32360258
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
马铃薯匍匐茎顶端弯钩发育过程中赤霉素介导蛋白质磷酸化调控机制
  • 批准号:
    32360091
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
  • 批准号:
    10378489
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
  • 批准号:
    10117399
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
  • 批准号:
    10650853
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
Mechanism of apicosome-driven lumen formation during human and mouse embryogenesis
人类和小鼠胚胎发生过程中顶端体驱动的管腔形成机制
  • 批准号:
    10249295
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了