muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer

muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解

基本信息

  • 批准号:
    10625394
  • 负责人:
  • 金额:
    $ 38.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

One in every 20 Americans develops colorectal cancer (CRC) and, once diagnosed, more than one-third will not survive 5 years. Although screening is available, stool assays such as fecal immunochemical test (FIT) and Cologuard have true positive rates ranging between 64-68% and false positive rate ranging between 5-10%. Moreover, other approaches such as colonoscopy are invasive and expensive and have low rates of patient adherence. There is clearly a need for additional biomarkers that complement existing screening procedures to identify individuals for subsequent colonoscopy and to better understand the biology that gives rise to tumors. Untargeted metabolomics has become an increasingly common approach to identify sources of such biomarkers from fecal samples; however, the general approach researchers use to analyze the data excludes the 95% of metabolites that currently lack an annotation. Animal models of CRC and human population studies have indicated that the gut microbiota has an underappreciated role in the disease. Therefore, it is critical that we characterize the metabolites generated by the gut microbiota to better understand the disease. The long-term goal of this research is to develop biomarkers that improve the detection of CRC and our understanding of the mechanisms that increase the risk of developing CRC. The objective of this proposal is to develop an open source R package, mums2, that allows researchers to identify metabolic biomarkers that can be associated with cancer regardless of whether they have already been annotated or whether they are produced by human or microbial cells. With this package, we will incorporate tools that allow researchers to implement the current state of the art for analyzing untargeted metabolomics and we will develop and validate methods for improving the quantification of MS features and clustering unknown metabolites based on their structural similarity. Three specific aims are proposed: (i) develop the mums2 R package, (ii) construct a predictive abundance algorithm for more accurate quantification of MS feature abundance, and (iii) construct operational metabolomics units (OMUs) as a framework for clustering unknown metabolites by structural similarity. Successful completion of these aims will result in a new platform for analyzing CRC metabolomics data for identifying biomarkers and understanding the underlying biology of tumorigenesis. To support this framework, we will create an open source R package, mums2, which will be useful for the expanding cancer microbiome and biomarker community. This package will democratize metabolomic analyses to broaden their adoption, reduce costs, improve the rigor and reproducibility of analyses, and enhance the ability to perform untargeted metabolomics analyses using a variety of biospecimens. Finally, the most important next step will be to apply these methods to better understand the interaction between the metabolome, microbiome, and tumorigenesis to identify diagnostic biomarkers and better understand the progression of CRC disease. The approaches and goals of the proposed research complement existing Informatics Technology for Cancer Research (ITCR) projects.
每 20 名美国人中就有 1 人患有结直肠癌 (CRC),一旦确诊,超过三分之一的人不会患结直肠癌 存活5年。尽管可以进行筛查,但仍需进行粪便检测,例如粪便免疫化学检测 (FIT) 和 Cologuard 的真阳性率在 64-68% 之间,假阳性率在 5-10% 之间。 此外,结肠镜检查等其他方法是侵入性的、昂贵的,并且患者的患病率较低。 坚持。显然需要额外的生物标志物来补充现有的筛选程序 识别个体进行后续结肠镜检查,并更好地了解引起肿瘤的生物学。 非靶向代谢组学已成为识别此类生物标志物来源的越来越常见的方法 来自粪便样本;然而,研究人员用来分析数据的一般方法排除了 95% 目前缺乏注释的代谢物。 CRC 动物模型和人群研究 表明肠道微生物群在该疾病中的作用未被充分认识。因此,至关重要的是我们 表征肠道微生物群产生的代谢物,以更好地了解该疾病。长期来看 这项研究的目标是开发生物标志物,以改善 CRC 的检测并加深我们对 CRC 的理解。 增加发生 CRC 风险的机制。该提案的目标是开发一个开放的 源 R 包 mums2,使研究人员能够识别与 癌症,无论它们是否已经被注释,或者它们是否是由人类或人类产生的 微生物细胞。通过这个包,我们将整合允许研究人员实现当前状态的工具 分析非靶向代谢组学的技术,我们将开发和验证改进方法 MS 特征的量化并根据未知代谢物的结构相似性进行聚类。三 提出了具体目标:(i) 开发 mums2 R 包,(ii) 构建预测丰度算法 为了更准确地量化 MS 特征丰度,以及 (iii) 构建可操作的代谢组学单元 (OMU)作为通过结构相似性对未知代谢物进行聚类的框架。顺利完成 这些目标将产生一个新的平台,用于分析 CRC 代谢组学数据,以识别生物标志物和 了解肿瘤发生的基本生物学。为了支持这个框架,我们将创建一个开源的 R 包 mums2,这对于扩大癌症微生物组和生物标志物群体很有用。这 一揽子计划将使代谢组学分析民主化,以扩大其采用范围、降低成本、提高严谨性和 分析的重现性,并增强使用各种方法进行非靶向代谢组学分析的能力 生物样本。最后,最重要的下一步是应用这些方法来更好地理解 代谢组、微生物组和肿瘤发生之间的相互作用,以确定诊断生物标志物并更好地 了解 CRC 疾病的进展。拟议研究补充的方法和目标 现有的癌症研究信息技术 (ITCR) 项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcy J Balunas其他文献

Marcy J Balunas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcy J Balunas', 18)}}的其他基金

muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10415579
  • 财政年份:
    2022
  • 资助金额:
    $ 38.09万
  • 项目类别:
Metabolites from Edible Blue-Green Algae for Obesity-Induced Inflammation
可食用蓝绿藻的代谢物可治疗肥胖引起的炎症
  • 批准号:
    8812586
  • 财政年份:
    2015
  • 资助金额:
    $ 38.09万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8139768
  • 财政年份:
    2009
  • 资助金额:
    $ 38.09万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8006416
  • 财政年份:
    2009
  • 资助金额:
    $ 38.09万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    7557522
  • 财政年份:
    2009
  • 资助金额:
    $ 38.09万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
  • 批准号:
    10822816
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
  • 批准号:
    10655877
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    $ 38.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了