Biogenesis of cyclic and phospholipid-linked enterobacterial common antigen
环状和磷脂连接的肠细菌共同抗原的生物发生
基本信息
- 批准号:10621314
- 负责人:
- 金额:$ 36.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-09 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAnabolismAntibiotic ResistanceAntibioticsAntigensBiochemicalBiochemical ReactionBiogenesisBiologyCarbohydratesCell Membrane PermeabilityCellsCellular StructuresCessation of lifeCyclizationDefectDevelopmentEnteralEnvironmentEscherichiaEscherichia coliEscherichia coli K12ExclusionFeedbackGenesGeneticGenetic DeterminismGenetic ScreeningGenetic TranscriptionGenomicsGoalsGram-Negative BacteriaHeadHydrophobicityInfectionInvestigationKlebsiellaKnowledgeLengthLinkLipidsMaintenanceMembraneMutationNatureNutrientPathogenicityPathway interactionsPeptidoglycanPeriodicityPermeabilityPhenotypePhospholipidsPhysiologicalPlayProductionReactionRegulationRegulatory PathwayRoleSalmonellaStressSurfaceTechniquesTranscription Regulation PathwayUnited StatesWorkYersiniaantibiotic resistant infectionsantimicrobialaqueousbile saltscell envelopeeconomic costenterobacterial common antigenexperiencegenetic analysisgenetic selectionimprovedinnovationinsightinterestmembernovelperiplasmposttranscriptionalresponsesmall molecule
项目摘要
PROJECT SUMMARY
Nearly 3 million antibiotic resistant infections occur per year in the United States. This problem is especially acute
in gram-negative bacteria, where the outer membrane (OM) which surrounds the aqueous periplasm acts as a
permeability barrier capable of excluding many antibiotics. We are interested in the OM of Enterobacterales (e.g.,
Escherichia, Salmonella, Klebsiella), which are adapted to an enteric environment rich in toxic molecules, such
as bile salts, necessitating an especially strong OM. It has become clear that the permeability of the OM can be
altered by the physiological state of the cell. Specifically, stresses such as nutrient limitation can result in
strengthening of the OM permeability barrier. Elucidation of the pathways responsible for this strengthening will
lead to new targets for the development of small molecules that can weaken the OM permeability barrier. We
have found enterobacterial common antigen (ECA), a conserved component of the Enterobacterales OM and
periplasm, to be important for OM impermeability under stress. Two forms of ECA (phospholipid-linked ECA
(ECAPG), and cyclic ECA (ECACYC)) have different roles related to OM permeability; however, their precise
functions remain unknown, in part, because many steps in their biogenesis are poorly understood.
Our long-term goal is to understand the biogenesis of ECA to facilitate functional studies and identify potential
antimicrobial targets. Specifically, this project aims to elucidate, in Escherichia coli K12, the regulation of and
unknown steps in biogenesis of the forms of ECA contributing to antibiotic resistance. Biochemical reactions are
required for these forms of ECA to be produced and yet the genes responsible for these steps and the regulation
of these steps are largely unknown. The central hypothesis is that ECAPG and ECACYC can be differentiate
through their unique biosynthetic genes and regulatory roles. This hypothesis will be addressed with the following
aims: identify the genes and substrate necessary for ECA to become a phospholipid head group forming ECAPG
using genetic interactions with other biosynthesis pathways (Aim 1); elucidate factors and mechanisms involved
in ECACYC biogenesis using an antibiotic sensitivity suppression phenotype we discovered (Aim 2); and uncover
the mechanisms of the two novel pathways of ECA regulation we discovered (Aim 3). These conceptually
innovative aims will be approached through a blend of high-throughput genomics, genetic screens and
selections, and biochemical techniques. Completion of this project will identify genes and residues important for
biogenesis of ECAPG and ECACYC, which represent targets for development of small molecules weakening the
OM. In addition, this will allow genetic analyses of ECA function, providing insights into Enterobacterales biology.
项目概要
美国每年发生近 300 万例抗生素耐药感染。这个问题尤其严重
在革兰氏阴性细菌中,包围水周质的外膜(OM)充当
能够排除许多抗生素的渗透性屏障。我们对肠杆菌目的 OM 感兴趣(例如,
埃希氏菌、沙门氏菌、克雷伯氏菌),它们适应富含有毒分子的肠道环境,例如
作为胆汁盐,需要特别强的 OM。很明显,OM 的磁导率可以是
因细胞的生理状态而改变。具体来说,营养限制等压力可能会导致
增强 OM 渗透屏障。阐明负责这种强化的途径将
导致开发可以削弱 OM 渗透屏障的小分子的新目标。我们
发现了肠杆菌共同抗原(ECA),肠杆菌目 OM 的保守成分,
周质对于 OM 在压力下的不渗透性很重要。 ECA 的两种形式(磷脂连接 ECA
(ECAPG) 和循环 ECA (ECACYC)) 在 OM 渗透性方面具有不同的作用;然而,他们的精确
其功能仍然未知,部分原因是其生物起源的许多步骤尚不清楚。
我们的长期目标是了解 ECA 的生物发生,以促进功能研究并确定潜在的
抗菌目标。具体来说,该项目旨在阐明大肠杆菌 K12 中的调节和
ECA 形式的生物合成中导致抗生素耐药性的未知步骤。生化反应是
这些形式的 ECA 的产生以及负责这些步骤和调节的基因是必需的
这些步骤很大程度上是未知的。中心假设是 ECAPG 和 ECACYC 可以区分
通过其独特的生物合成基因和调节作用。该假设将通过以下内容得到解决
目标:确定 ECA 成为形成 ECAPG 的磷脂头基所需的基因和底物
利用与其他生物合成途径的遗传相互作用(目标 1);阐明相关因素和机制
在 ECACYC 生物发生中使用我们发现的抗生素敏感性抑制表型(目标 2);并揭开
我们发现的 ECA 调节的两种新途径的机制(目标 3)。这些概念上
将通过高通量基因组学、遗传筛选和
选择和生化技术。该项目的完成将鉴定出重要的基因和残基
ECAPG 和 ECACYC 的生物发生,代表弱化小分子开发的目标
哦。此外,这将允许对 ECA 功能进行遗传分析,从而提供对肠杆菌生物学的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Marie Mitchell其他文献
Angela Marie Mitchell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Marie Mitchell', 18)}}的其他基金
Biogenesis of cyclic and phospholipid-linked enterobacterial common antigen
环状和磷脂连接的肠细菌共同抗原的生物发生
- 批准号:
10793673 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Biogenesis of cyclic and phospholipid-linked enterobacterial common antigen
环状和磷脂连接的肠细菌共同抗原的生物发生
- 批准号:
10755753 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Biogenesis of cyclic and phospholipid-linked enterobacterial common antigen
环状和磷脂连接的肠细菌共同抗原的生物发生
- 批准号:
10293347 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
Biogenesis of cyclic and phospholipid-linked enterobacterial common antigen
环状和磷脂连接的肠细菌共同抗原的生物发生
- 批准号:
10425460 - 财政年份:2021
- 资助金额:
$ 36.7万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 36.7万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 36.7万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 36.7万 - 项目类别:
Functional analysis of KCNK12 in dopaminergic neuroprotection
KCNK12在多巴胺能神经保护中的功能分析
- 批准号:
10665836 - 财政年份:2023
- 资助金额:
$ 36.7万 - 项目类别: