Cell Adhesion and the Regulation of Rho GTPases

细胞粘附和 Rho GTP 酶的调节

基本信息

  • 批准号:
    9040974
  • 负责人:
  • 金额:
    $ 45.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1981
  • 资助国家:
    美国
  • 起止时间:
    1981-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): It is well established that cells are frequently exposed to changing levels of mechanical tension, and that they respond to tension through signaling pathways that affect their cytoskeletal organization, their cell shape and often their gene expression. Tension is usually transmitted through membrane-spanning cell adhesion molecules that either mediates attachment to the extracellular matrix or to other cells. At their cytoplasmic face these adhesion molecules connect with the cytoskeleton. Tension on adhesion molecules can derive from external sources or be generated by a cell's own actomyosin contractile system. Many of the signaling pathways initiated by tension on adhesion molecules converge to regulate Rho family GTPases, which in turn, influence many aspects of cell behavior. The goal of this grant is to understand how mechanical tension on different adhesion molecules signal to Rho GTPases, focusing on integrins, cadherins and the tight junction protein JAM-A. Applying tension to these adhesion molecules via magnetic beads, we will identify how tension activates pathways that regulate the activities of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Within a tissue as tension increases on one cell there is often a parallel decrease in tension on another, and cells need to be able to respond to both increasing and decreasing levels of mechanical tension. Consequently, we will also investigate how release of tension affects the signaling pathways that regulate Rho GTPase activity. With adherens junctions and tight junctions, tension can either enhance barrier function and junction assembly, or it can increase permeability and promote disassembly. We will test the hypothesis that these divergent effects of tension on junctions derive from the influence of additional signaling pathways that modulate the specific response to tension. Mechanical tension is also relayed from the cell surface to the nucleus, which is linked to the cytoskeleton via multiple connections. We have shown recently that isolated nuclei stiffen in response to tension and that blocking this response affects cytoskeletal organization as well as cell migration. Building on these findings, as well as on the work of others showing similar consequences from disrupting the links between the nucleus and the cytoskeleton, we will explore how the nucleus contributes to the overall tension within the actin cytoskeleton, thereby influencing the activities of Rho GTPases.
 描述(由申请人提供):众所周知,细胞经常暴露于不断变化的机械张力水平,并且它们通过影响其细胞骨架组织、细胞形状以及通常其基因表达的信号传导途径对张力做出反应。张力通常是其基因表达。通过跨膜细胞粘附分子传递,这些粘附分子介导与细胞外基质或其他细胞的附着,这些粘附分子在细胞质表面与细胞骨架连接。或由细胞自身的肌动球蛋白收缩系统产生,许多由粘附分子张力引发的信号传导途径汇聚以调节 Rho 家族 GTP 酶,从而影响细胞行为的许多方面。这项资助的目标是了解其机械作用。不同粘附分子上的张力向 Rho GTPases 发出信号,重点是整合素、钙粘蛋白和紧密连接蛋白 JAM-A 通过磁珠对这些粘附分子施加张力,我们将识别。张力如何激活调节组织内鸟嘌呤核苷酸交换因子 (GEF) 和 GTP 酶激活蛋白 (GAP) 活性的途径,当一个细胞上的张力增加时,另一个细胞上的张力通常会同时降低,并且细胞需要能够做到这一点。为了响应观察到的机械张力的增加和减少,我们还将研究张力的释放如何影响调节 Rho GTP 酶活性的信号通路,张力可以增强屏障功能和连接组装,或者它可以增加渗透性并促进分解,即张力对连接的这些不同影响源自调节对张力的特定反应的额外信号通路的影响。 ,我们最近证明,孤立的细胞核会因张力而变硬,并且基于这些发现以及其他人的工作,阻断这种反应会影响细胞骨架组织和细胞迁移。破坏细胞核和细胞骨架之间的联系显示出类似的后果,我们将探索细胞核如何影响肌动蛋白细胞骨架内的整体张力,从而影响 Rho GTPases 的活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Burridge其他文献

Keith Burridge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Burridge', 18)}}的其他基金

Endothelial Cell Uptake of Infected Erythrocytes in Cerebral Malaria
脑型疟疾中感染红细胞的内皮细胞摄取
  • 批准号:
    9112857
  • 财政年份:
    2015
  • 资助金额:
    $ 45.19万
  • 项目类别:
Endothelial Cell Uptake of Infected Erythrocytes in Cerebral Malaria
脑型疟疾中感染红细胞的内皮细胞摄取
  • 批准号:
    8969179
  • 财政年份:
    2015
  • 资助金额:
    $ 45.19万
  • 项目类别:
Rho-mediated Signaling in Lung Endothelial Cells Induced by Neutrophil Adhesion
中性粒细胞粘附诱导的肺内皮细胞中 Rho 介导的信号传导
  • 批准号:
    8321142
  • 财政年份:
    2012
  • 资助金额:
    $ 45.19万
  • 项目类别:
Rho-mediated Signaling in Lung Endothelial Cells Induced by Neutrophil Adhesion
中性粒细胞粘附诱导的肺内皮细胞中 Rho 介导的信号传导
  • 批准号:
    8473275
  • 财政年份:
    2012
  • 资助金额:
    $ 45.19万
  • 项目类别:
Rho-mediated Signaling in Lung Endothelial Cells Induced by Neutrophil Adhesion
中性粒细胞粘附诱导的肺内皮细胞中 Rho 介导的信号传导
  • 批准号:
    8651535
  • 财政年份:
    2012
  • 资助金额:
    $ 45.19万
  • 项目类别:
Full Project 1: LSR Alters Metabolic Signaling to Drive Aggressive Breast Cancer Behaviors
完整项目 1:LSR 改变代谢信号以驱动侵袭性乳腺癌行为
  • 批准号:
    10247134
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
Full Project 1: LSR Alters Metabolic Signaling to Drive Aggressive Breast Cancer Behaviors
完整项目 1:LSR 改变代谢信号以驱动侵袭性乳腺癌行为
  • 批准号:
    9044449
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
CB2 Cannabinoid Receptor-mediated Regulation of Prostate Cancer Growth
CB2 大麻素受体介导的前列腺癌生长调节
  • 批准号:
    8068504
  • 财政年份:
    2010
  • 资助金额:
    $ 45.19万
  • 项目类别:
Cell Adhesion and the Regulation of Rho GTPases
细胞粘附和 Rho GTP 酶的调节
  • 批准号:
    7999960
  • 财政年份:
    2009
  • 资助金额:
    $ 45.19万
  • 项目类别:
CYTOSKELETAL REGULATION OF ENDOTHELIAL CELL JUNCTIONS
内皮细胞连接的细胞骨架调节
  • 批准号:
    7474511
  • 财政年份:
    2007
  • 资助金额:
    $ 45.19万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
  • 批准号:
    31901612
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
  • 批准号:
    31701215
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Regulation of dynamic actin networks during epithelial morphogenesis
上皮形态发生过程中动态肌动蛋白网络的调节
  • 批准号:
    10797655
  • 财政年份:
    2022
  • 资助金额:
    $ 45.19万
  • 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
  • 批准号:
    10655616
  • 财政年份:
    2021
  • 资助金额:
    $ 45.19万
  • 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
  • 批准号:
    10482413
  • 财政年份:
    2021
  • 资助金额:
    $ 45.19万
  • 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
  • 批准号:
    10277473
  • 财政年份:
    2021
  • 资助金额:
    $ 45.19万
  • 项目类别:
Preventing Recurrent Capsular Contracture in Traumatic Elbow Injuries
预防肘部外伤中复发性包膜挛缩
  • 批准号:
    9891331
  • 财政年份:
    2020
  • 资助金额:
    $ 45.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了