An Integrated Imaging System for High-throughput Nanoscopy of the 4D Nucleome
用于 4D 核组高通量纳米显微成像的集成成像系统
基本信息
- 批准号:9003448
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsArchitectureAutomationBehaviorBenchmarkingBindingBiologicalBiologyCell NucleusCell physiologyCellsChromatinChromatin FiberChromatin ModelingChromosomesClustered Regularly Interspaced Short Palindromic RepeatsColorComplexCrowdingDNADNA-Binding ProteinsDataData QualityData SetDatabasesDetectionDevelopmentDiseaseEnvironmentEventFeedbackGene ExpressionGenerationsGenetic TranscriptionHealthHistonesHourImageImage AnalysisImaging DeviceIndividualKnowledgeLabelLengthLifeMalignant NeoplasmsMammalian CellMapsMeasuresMechanicsMethodsMicroscopeMissionModelingMolecular ConformationMovementNuclearNucleosomesOpticsPathway interactionsPerformancePhysicsPositioning AttributeProceduresProcessProteinsPublic HealthRNARegulationReplication OriginResearchResolutionRoleScanningScientistSoftware ToolsSpeedStructureSynaptonemal ComplexSystemTAF3 geneTechniquesTelomere RecombinationTestingThickTimeTranscriptional RegulationVariantadaptive opticsbasecellular imagingcofactorcomputer infrastructurecomputer sciencecomputerized data processingdata modelingdevelopmental diseaseembryonic stem cellexperienceflexibilitygenetic informationhistone modificationholistic approachimage processingimaging systeminnovationinstrumentinstrumentationinterestnanoscalenew technologynovelparticleperformance testspiRNAprocess optimizationpublic health relevancerepairedsingle moleculespatiotemporaltooltool developmenttranscription factor
项目摘要
DESCRIPTION (provided by applicant): The complex of DNA, protein, and RNA known as chromatin is the substrate for essential cellular processes such as gene transcription, regulation, replication, and repair. Unravelling its structure and dynamics is therefore essential f we are to understand the mechanics of these processes and their effects in development and disease. Chromatin is, however, a difficult target to study: it is found in a crowded environment within the nucleus, is structurally organized on multiple length scales, is variable within and between nuclei, and is highly dynamic. Capturing this information requires instrumentation which can (i) measure on multiple length scales, from the whole cell down to tens of nm, (ii) follow chromatin dynamics in living cells, and (iii) acquire and quantify thousands of images in a manageable time frame to overcome the intrinsic variability and provide a statistical description of chromatin behavior. Such an instrument does not yet exist, with existing instrumentation being limited in resolution, dynamic speed, and throughput. We propose an innovative multi-disciplinary approach that combines developments in optics, data processing and modeling to realize an integrated system for automated high-throughput super- resolution imaging and dense single-molecule tracking in the cell nucleus. Our Specific Aims are: 1) Develop an automated multicolor 3D single-molecule switching (SMS) nanoscope for dynamic imaging and particle-tracking in the nucleus, 2) Develop data processing tools for high-throughput 3D- SMS nanoscopy of 100-1,000 cells/h, 3) Develop chromatin modeling tools that take advantage of the unprecedented level of detail and statistical depth of the 4D data provided by high-throughput particle- tracking and SMS nanoscopy, and 4) test the performance and refine our technical developments by applying them to a diverse set of representative and important questions in the field of chromatin architecture, including the mobility and dynamics of transcription factors and nucleosomes, and the processes of synaptonemal assembly and telomere recombination. The proposal represents a fundamental departure from the traditional view of the nanoscopy image generation procedure as a hands-on process heavily involving an expert user to an automated, high- throughput method with focus on quantification and efficiency. By making nanoscopy studies of tens of thousands of cells feasible, we anticipate that our instrument will enable, for the first time, the spatiotemporal dynamics of the nucleome to be quantitatively investigated down to the single nucleosome level.
描述(由应用提供):DNA,蛋白质和RNA的复合物称为染色质,是基因转录,调节,复制和修复等必需细胞过程的底物。因此,阐明其结构和动态是必不可少的,我们要了解这些过程的机制及其在发育和疾病中的影响。然而,染色质是一个难以研究的靶标:在核us内的拥挤环境中发现了染色质,在结构上是在多个长度尺度上组织的,在核内和核之间是可变的,并且具有高度动态性。捕获此信息需要仪器,该仪器可以(i)在多个长度尺度上进行测量,从整个细胞降低到数十nm,(ii)遵循活细胞中的染色质动力学,(iii)在可管理的时间范围内获取和量化数千个图像,以克服本质上的变异性并提供染色质行为的统计描述。这种仪器尚未存在,现有仪器在分辨率,动态速度和吞吐量方面受到限制。我们提出了一种创新的多学科方法,该方法结合了光学,数据处理和建模的发展,以实现用于自动化高通量超分辨率成像和细胞核中密集的单分子跟踪的集成系统。我们的具体目的是:1)开发一种自动多色3D单分子开关(SMS)纳米镜,用于动态成像和粒子跟踪的动态成像和粒子跟踪,2)2)2)用于高通量3D- SMS纳米镜检查工具的数据处理工具,该工具的纳米纳西检查是100-1,000个细胞/h的100-1,000个细胞/h,3)均能开发出4个固定级别的固定级别的级别,这些工具是固定的,该工具是详细仪的,该工具的优势是详细范围的,这些量很详细且固定级别的级别,并获得了良好的级别。高通量粒子跟踪和SMS纳米镜检查,以及4)通过将它们应用于染色质体系结构领域的潜水员集和重要问题的潜水员集,包括转录因子和核心小体的动力学和动态,以及Synaptonemal组装和远程征膜重新组合的过程,测试并完善我们的技术发展。该提案代表了纳米镜检查图像生成程序的传统观点的基本偏差,因为动手操作过程涉及专家用户到自动化的高通量方法,重点是量化和效率。通过对成千上万个细胞可行的纳米镜检查研究,我们预计我们的仪器将首次实现核心的空间时间动力学,以定量研究到单个核病士水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID BADDELEY其他文献
DAVID BADDELEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID BADDELEY', 18)}}的其他基金
Enabling Nanoscale Dynamic Imaging of Vesicles and Organelles
实现囊泡和细胞器的纳米级动态成像
- 批准号:
9357659 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
An Integrated Imaging System for High-throughput Nanoscopy of the 4D Nucleome
用于 4D 核组高通量纳米显微成像的集成成像系统
- 批准号:
9149197 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Elucidating mechanisms of cellular communication critical for head and neck cancer progression and metastasis.
阐明对头颈癌进展和转移至关重要的细胞通讯机制。
- 批准号:
10752228 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别: