Disease-Modifying Genes in Huntington's Disease
亨廷顿病的疾病修饰基因
基本信息
- 批准号:10614452
- 负责人:
- 金额:$ 69.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAllelesBiologicalBiological ModelsBiological ProcessCAG repeatCRISPR/Cas technologyCell LineCellsCessation of lifeCharacteristicsChoreaClinicalClinical TrialsCodeCodon NucleotidesCognitiveCollaborationsDNA Maintenance ProcessDataDiagnosisDiseaseDisease ProgressionFamilyFoundationsGene ExpressionGenesGeneticGenetic TranscriptionGenetic VariationGenomic approachGlutamineGrantHaplotypesHomeHumanHuman GeneticsHuntington DiseaseHuntington geneIndividualInheritedInterventionKnowledgeLaboratoriesLengthMediatingModificationMotorMutationNatureNeurodegenerative DisordersNeuronsOnset of illnessParticipantPathogenesisPathway interactionsPatientsPharmacologic SubstancePhenotypeProcessPropertyProteinsRNARegulationReportingResourcesRouteSignal TransductionSocietiesSymptomsTestingTherapeuticTherapeutic InterventionTimeToxic effectVariantclinical diagnosiscostdisease phenotypeeffective therapygenetic approachgenome-widehuman datahuman modelinduced pluripotent stem cellmouse modelnew therapeutic targetnovelpolyglutamineprematurepreventsample collectionsuccesstherapeutic developmenttherapeutic targettime interval
项目摘要
Disease-Modifying Genes in Huntington's Disease: HD is a devastating neurodegenerative disorder with a long,
costly, debilitating course to premature death, ~15 yrs after clinical diagnosis. There is a dire need for effective
therapies to alleviate the suffering and cost to the individual, family and society. The HD mutation in HTT is an
expanded CAG trinucleotide repeat whose length is the main factor determining the timing of clinical onset.
Although it is often assumed that the length of polyglutamine in huntingtin drives the rate of pathogenesis leading
to HD onset, our data from HD subjects do not support this conclusion. Disease-associated HTT alleles with the
same pure CAG repeat size may produce different-sized polyglutamine tracts due to variable glutamine-encoding
CAA codons, with no commensurate hastening in HD onset due to extra glutamines. Rather, age-at-onset is
best explained by a property of the pure CAG repeat separate from its coding potential. We have discovered that
HD age-at-onset is modified by genetic variation at 6 loci that encode genes involved in a variety of DNA
maintenance processes. These genetic modifiers, in both humans and mouse models, implicate somatic
expansion of the CAG repeat rather than encoded polyglutamine as the factor determining age-at-onset. By
contrast, symptomatic progression shows at best a weak correlation with CAG repeat size, while duration of
manifest disease (i.e., the time from motor diagnosis to death) is independent of CAG repeat length, suggesting
that other factors are paramount in determining pathogenesis from onset to death. Overall our findings point to
HD as comprising two distinct components: 1) length-dependent somatic expansion of the CAG repeat up to and
above a threshold length (rate driver) that then engages toxicity and 2) as yet uncertain mechanism(s) by which
the somatically expanded repeat triggers damage when the threshold length is reached (toxicity driver). The
nature of the toxicity driver(s) is not yet unequivocal. An effect on huntingtin by above-threshold polyglutamine
(rather than continuous length-dependent toxicity) is both attractive and consistent with the effects of long CAG
repeats in model systems, but other mechanisms that act at the transcriptional or RNA level have also been
suggested as causative. The success of our human genetic strategy has begun to provide new targets for
therapeutic interventions to delay or prevent HD onset. In this renewal, we will identify additional rate modifiers
to more fully delineate the process of somatic CAG expansion in humans and will extend our strategy to discover
modifiers of manifest disease that implicate the nature of the toxicity driver or its damaging consequences. The
identification of novel targets, implicated by the natural variation in biological processes ongoing in HD subjects
themselves, will provide a firm foundation for developing pharmaceutical interventions that push those processes
even farther, toward a strong therapeutic benefit. Thus, the promise of this grant is a new and powerful route to
fulfilling the greatest need of both premanifest and manifest HD subjects and their families: effective treatments
to block or delay onset and progression of the disease.
亨廷顿舞蹈病的疾病修饰基因:亨廷顿舞蹈病是一种毁灭性的神经退行性疾病,具有长期、
临床诊断后约 15 年,患者会经历昂贵且令人衰弱的过程直至过早死亡。迫切需要有效的
减轻个人、家庭和社会的痛苦和成本的疗法。 HTT 中的 HD 突变是
扩展的CAG三核苷酸重复序列的长度是决定临床发病时间的主要因素。
尽管人们通常认为亨廷顿蛋白中聚谷氨酰胺的长度决定了发病率,导致
对于 HD 发作,我们来自 HD 受试者的数据并不支持这一结论。与疾病相关的 HTT 等位基因
由于谷氨酰胺编码可变,相同的纯 CAG 重复大小可能会产生不同大小的聚谷氨酰胺束
CAA 密码子,由于额外的谷氨酰胺,HD 发病没有相应的加速。相反,发病年龄是
最好的解释是纯 CAG 重复序列与其编码潜力分开的特性。我们发现
HD 发病年龄受到 6 个基因座遗传变异的影响,这些基因座编码涉及多种 DNA 的基因
维护流程。这些基因修饰剂在人类和小鼠模型中都涉及体细胞
CAG重复序列的扩增而不是编码的聚谷氨酰胺作为决定发病年龄的因素。经过
相比之下,症状进展充其量与 CAG 重复大小存在弱相关性,而症状进展的持续时间
明显疾病(即从运动诊断到死亡的时间)与 CAG 重复长度无关,表明
其他因素在确定从发病到死亡的发病机制中至关重要。总的来说,我们的研究结果表明
HD 包含两个不同的组成部分:1) CAG 重复的长度依赖性体细胞扩展至 和
超过阈值长度(速率驱动因素),然后产生毒性;2)尚不确定的机制
当达到阈值长度时,体细胞扩展的重复会触发损伤(毒性驱动因素)。这
毒性驱动因素的性质尚未明确。阈值以上聚谷氨酰胺对亨廷顿蛋白的影响
(而不是连续长度依赖性毒性)既有吸引力又与长 CAG 的效果一致
在模型系统中重复,但在转录或 RNA 水平起作用的其他机制也已被研究
建议作为因果关系。我们人类遗传策略的成功已经开始为
延迟或预防 HD 发作的治疗干预措施。在此更新中,我们将确定其他费率调节因素
更全面地描绘人类体细胞 CAG 扩张的过程,并将扩展我们的策略以发现
涉及毒性驱动因素的性质或其破坏性后果的明显疾病的修饰语。这
识别新靶标,这些靶标与 HD 受试者中正在进行的生物过程的自然变化有关
它们本身将为开发推动这些过程的药物干预措施提供坚实的基础
甚至更进一步,以获得强大的治疗效果。因此,这笔赠款的承诺是一条新的、强有力的途径
满足HD患者及其家人的最大需求:有效的治疗
阻止或延缓疾病的发生和进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES F GUSELLA其他文献
JAMES F GUSELLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES F GUSELLA', 18)}}的其他基金
Genetic Mechanisms Controlling Resilience to Huntington's Disease
控制亨廷顿病抵抗力的遗传机制
- 批准号:
10531136 - 财政年份:2021
- 资助金额:
$ 69.06万 - 项目类别:
Genetic Mechanisms Controlling Resilience to Huntington's Disease
控制亨廷顿病抵抗力的遗传机制
- 批准号:
10388685 - 财政年份:2021
- 资助金额:
$ 69.06万 - 项目类别:
Genetic Mechanisms Controlling Resilience to Huntington's Disease
控制亨廷顿病抵抗力的遗传机制
- 批准号:
10889305 - 财政年份:2021
- 资助金额:
$ 69.06万 - 项目类别:
Dissecting recurrent microdeletion syndromes using dual-guide genome editing
使用双引导基因组编辑剖析复发性微缺失综合征
- 批准号:
9087365 - 财政年份:2015
- 资助金额:
$ 69.06万 - 项目类别:
Dissecting recurrent microdeletion syndromes using dual-guide genome editing
使用双引导基因组编辑剖析复发性微缺失综合征
- 批准号:
8944343 - 财政年份:2015
- 资助金额:
$ 69.06万 - 项目类别:
Genetic modifiers of Predict-HD phenotypes
Predict-HD 表型的遗传修饰剂
- 批准号:
8597073 - 财政年份:2013
- 资助金额:
$ 69.06万 - 项目类别:
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 69.06万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 69.06万 - 项目类别:
MicroRNA lipid-nanoparticle based therapy targets neuroinflammation and ApoE dysregulation in Alzheimer’s disease
基于 MicroRNA 脂质纳米颗粒的疗法针对阿尔茨海默病中的神经炎症和 ApoE 失调
- 批准号:
10667157 - 财政年份:2023
- 资助金额:
$ 69.06万 - 项目类别: