Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
基本信息
- 批准号:9110921
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAreaAwarenessBiological MarkersBreastBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer PatientBreast Cancer Risk Assessment ToolBreast Cancer Risk FactorCancer PatientCase-Control StudiesCategoriesCause of DeathCharacteristicsClinicalClinical TrialsCollectionComputer Vision SystemsComputer softwareContralateralCounselingDataData SetDatabasesDescriptorDevelopmentDrug or chemical Tissue DistributionEffectivenessEpithelialEthnic OriginExhibitsFoundationsFutureGoalsHealth Care CostsHealthcareHigh Risk WomanImageImage AnalysisIndividualJointsMachine LearningMalignant NeoplasmsMammographyMeasuresMethodsModelingMonitorPatientsPatternPerformancePlayPopulationPreventivePreventive treatmentRaceRecommendationRiskRisk AssessmentRisk EstimateRisk FactorsRisk ManagementStratificationStructureTechniquesTestingTimeTissuesTrainingTreatment ProtocolsValidationVisualWomanabstractingbasebreast cancer diagnosisbreast densitycancer diagnosiscancer riskcase controlcompare effectivenesscomputerizedcostcost effectivedensitydesigndigitalfollow-upimaging biomarkerimprovedindividual patientinnovationinterestmalignant breast neoplasmpersonalized medicinepredictive modelingpublic health relevanceradiologistresearch and developmentscreeningstatisticssuccesstooltumor
项目摘要
DESCRIPTION (provided by applicant): Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk Project Summary/Abstract Breast cancer remains one of the leading causes of death among women at the age of 40 and older. Mammography has been used as a low-cost screening tool for breast cancer. The recent controversy on breast cancer screening recommendations has increased public awareness and interests for informed counseling of screening and health care options based on individualized estimates of risk. The goal of this proposed project is to develop a computerized image-based biomarker to assess the breast cancer risk of individual patients in the screening population. The innovation of our approach lies in the fact that the quantitative breast parenchyma descriptor (q-BPD) will be designed to take into account not only the percentage of dense tissue (PD) but also the stromal and epithelial structural pattern of an individual's breast that is complementary to, rather than a
surrogate of, the breast density. The q-BPD is obtained by a joint analysis of the complexity of the parenchymal distribution pattern (mammographic parenchymal pattern, MPP) and the amount of dense tissue (PD) as they are imaged on full-field digital mammograms (FFDMs). We hypothesize that the proposed q-BPD is an independent risk factor for breast cancer and will have a stronger predictive power than previous approaches such as PD or BI-RADS density categories alone. To test the hypothesis, we have the following specific aims: (1) to collect a matched case-control data set of 500 breast cancer cases and 2000 matched controls with 5 years of prior FFDMs (prior to cancer diagnosis for the case group). We will split the entire data set into independent subsets for training and validation; (2) to design a q- BPD by using advanced machine learning and computer vision techniques to maximize the discriminatory power at the personal level; (3) to investigate the association of developed q-BPD with breast cancer risk in comparison with commonly used density descriptors, such as radiologist's estimates of BI-RADS density categories and interactive PD on FFDMs by case-control studies and statistical analyses, taking into account other confounding risk factors. When fully developed, the automated q-BPD can be incorporated as a part of routine breast cancer screening. It will not only be useful for breast cancer risk prediction for individual patients but
also for monitoring of risk regression or progression over time due to treatment or other factors. The new risk prediction tool is expected to play a key role in personalized breast cancer screening for women at different risk levels, thereby reducing health care costs while benefiting high risk women. The success of this project will lay the foundation for future large-scale clinica trials to address the limitations and investigate the clinical utilities of the proposed q-BPD for breast cancer risk prediction. Key Words: quantitative breast parenchyma analysis, image-based biomarker, breast cancer risk prediction, full-field digital mammogram (FFDM)
描述(由适用提供):定量实质描述符作为乳腺癌风险项目的成像生物标志物摘要/抽象乳腺癌仍然是40岁及以上妇女的主要死亡原因之一。乳房X线摄影已被用作乳腺癌的低成本筛查工具。关于乳腺癌筛查建议的最新争议提高了公众意识和利益,以根据个性化的风险估计来了解筛查和医疗保健选择的知情咨询。该拟议项目的目的是开发基于计算机的基于图像的生物标志物,以评估筛查人群中个别患者的乳腺癌风险。我们方法的创新在于一个事实,即定量乳腺实质描述符(Q-BPD)将被设计为不仅要考虑到密集组织(PD)的百分比,而且还要考虑到个人乳房的基质和上皮结构模式,而不是完整的乳房
代理,乳房密度。 Q-BPD是通过对副型分布模式(乳腺X线副副标模式,MPP)的复杂性和密集组织(PD)的量的复杂性进行的联合分析而获得的,因为它们是在全场数字乳房X线照片(FFDMS)上成像的。我们假设所提出的Q-BPD是乳腺癌的独立危险因素,并且比以前的方法(例如PD或BI-RADS密度类别)具有强大的预测能力。为了检验假设,我们具有以下具体目的:(1)收集500例乳腺癌病例的匹配病例对照数据集,并具有5年的先前FFDMS(病例组的癌症诊断之前)匹配的对照组。我们将将整个数据集分为独立的子集进行培训和验证; (2)通过使用高级机器学习和计算机视觉技术来设计Q-bpd,以最大程度地发挥个人水平的歧视能力; (3)与常用密度描述符相比,研究了开发的Q-BPD与乳腺癌风险的关联,例如放射科医生对BI-RADS密度类别的估计以及通过病例对照研究和统计分析的FFDMS对FFDMS的互动PD的估计,并考虑了其他混淆风险因素。完全开发后,可以将自动化的Q-BPD作为常规乳腺癌筛查的一部分合并。它不仅对个别患者的乳腺癌风险预测有用,而且对
还用于监测由于治疗或其他因素而导致的风险回归或进展。预计新的风险预测工具将在不同风险水平的女性的个性化乳腺癌筛查中发挥关键作用,从而降低医疗保健成本,同时使高风险女性受益。该项目的成功将为未来的大规模临床试验奠定基础,以解决局限性并研究拟议的Q-BPD乳腺癌风险预测的临床实用性。关键词:定量乳腺实质分析,基于图像的生物标志物,乳腺癌风险预测,全场数字乳房X线照片(FFDM)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Wei其他文献
Jun Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Wei', 18)}}的其他基金
Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
- 批准号:
9750643 - 财政年份:2015
- 资助金额:
$ 37.78万 - 项目类别:
Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
- 批准号:
9321215 - 财政年份:2015
- 资助金额:
$ 37.78万 - 项目类别:
Synthetic Oleananes: Innovative Treatment of Fibrosis
合成齐墩果烷:纤维化的创新治疗方法
- 批准号:
8774095 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
Synthetic Oleananes: Innovative Treatment of Fibrosis
合成齐墩果烷:纤维化的创新治疗方法
- 批准号:
8917095 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
- 批准号:
10826874 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别: