Evaluating the role of excitatory interneurons for regeneration after spinal cord injury using in vitro and in vivo transgenic models
使用体外和体内转基因模型评估兴奋性中间神经元在脊髓损伤后再生中的作用
基本信息
- 批准号:9119889
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-11 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdultAnimal ModelAntibiotic ResistanceAppearanceAxonBiological FactorsBrain-Derived Neurotrophic FactorBypassCalciumCell TransplantationCellsCharacteristicsCicatrixClinicalCoculture TechniquesComplexCuesDevelopmentDevicesDorsalES Cell LineElectric StimulationEnvironmentEventFlow CytometryFutureGenerationsGenesGeneticGlutamatesGoalsGrantGrowthHealedHealthIn VitroInjuryInterneuronsInterventionKnock-outKnowledgeLesionLifeLiteratureLocomotor RecoveryMitoticModelingMolecular TargetMotorMotor NeuronsMusNatural regenerationNeuraxisNeuronsNeurotrophin 3OutcomePathologyPatientsPatternPeriodicityPopulationProteinsProtocols documentationPuromycinRattusReporterReportingResearchReverse Transcriptase Polymerase Chain ReactionRoleSiteSpinalSpinal CordSpinal cord injurySynapsesTechniquesTransgenic AnimalsTransgenic ModelTransgenic OrganismsTransplantationUnited StatesWorkbasebiomarker identificationcell typecentral pattern generatordesigneffective therapyembryonic stem cellgain of functiongray matterhealingimmunocytochemistryimprovedin vitro Modelin vivonovelpartial recoverypreventpromoterprotein expressionresponsespinal cord regenerationstem cell therapytargeted treatmenttherapeutic targettooltranscription factorwhite matter
项目摘要
DESCRIPTION (provided by applicant): Spinal cord injury (SCI) is a debilitating condition resulting in irreversible loss of motor function below the site of injury. The complex pathology of
SCI, involving a cascade of secondary events and the formation of inhibitory barriers, prevent regeneration across the lesion site. However, in rare cases of spontaneous locomotor recovery, neurons spared in the white matter around the lesion sprout collaterals that bypass the inhibitory scar and form functional relay circuits. The long-term goal of this research is to understand mechanisms of plasticity in the spinal cord after injury; identifying cell types, biological factor, and pharmaceautical agents that are involved in these mechanisms will aid in the development of clinical interventions to improve locomotor outcomes. Because of their role in central pattern generation, contributing to coordination and rhythm, excitatory glutamatergic ventral interneurons-V0, V2a, and V3- are candidate populations to examine for roles in rewiring events resulting in gain of function. While the distinct developmental transcription factor profiles that define these interneurons are increasingly well defined, a lack of mature identification markers has made study of endogenous populations in adults difficult. Our lab has recently developed protocols to differentiate V2a and V3 interneurons from embryonic stem cells (ESCs). By using recombineering techniques to generate transgenic ESCs, large, pure populations of these interneurons will be available to study therapeutic targets and for cell replacement strategies. Furthermore, the recent availability of transgenic animals allowing us to lineage trace specific interneurons enables study of endogenous responses to SCI. The first aim seeks to generate and characterize transgenic V2a ESCs for in vitro study and for transplantation in animal models of SCI. Using BAC recombineering, puromycin antibiotic resistance or a fluorescent protein will be inserted under the V2a-specific Chx10 gene, generating pure or traceable ESC- derived V2a interneurons when differentiated using established protocols. The second aim seeks to apply a novel in vitro microdevice to study isolated and co-cultured transgenic ESC-derived and primary interneurons from transgenic reporter mice. We hypothesize that the addition of certain biological factors might significantly improve maturation and the formation of functional synapses in interneuron populations compared to others. The third aim seeks to discover the role of endogenous ventral spinal interneurons on regeneration after dorsal hemisection spinal cord injury in transgenic reporting mice by evaluating axon sprouting, reformation of synapses, and correlation of interneuron-specific sprouting to locomotor recovery. Together, these aims develop in vitro and in vivo platforms to determine the role of ventral interneurons in spinal cord
rewiring events after SCI.
描述(由申请人提供): 脊髓损伤 (SCI) 是一种导致损伤部位以下运动功能不可逆丧失的衰弱性疾病,其病理学十分复杂。
SCI,一系列继发事件和抑制屏障的形成,阻止了病变部位的再生。然而,在自发运动恢复的极少数情况下,病变周围白质中幸存的神经元会萌发侧枝,绕过抑制性疤痕并形成功能。这项研究的长期目标是了解损伤后脊髓的可塑性机制;识别参与这些机制的细胞类型、生物因素和药物将有助于开发临床干预措施。由于其在中枢模式生成中的作用,有助于协调和节律,兴奋性谷氨酸能腹侧中间神经元 - V0、V2a 和 V3 - 是检查在重新布线事件中的作用的候选群体,从而导致功能获得。定义这些中间神经元的发育转录因子谱越来越明确,但缺乏成熟的识别标记使得对成人内源性群体的研究变得困难,我们的实验室最近开发了区分 V2a 和 V3 中间神经元的方案。通过使用重组工程技术产生转基因胚胎干细胞,这些中间神经元的大量纯群体将可用于研究治疗靶点和细胞替代策略。此外,最近转基因动物的出现使我们能够追踪特定的谱系。中间神经元能够研究 SCI 的内源性反应,第一个目标是利用 BAC 重组工程产生并表征转基因 V2a ESC,用于体外研究和移植到 SCI 动物模型中。嘌呤霉素抗生素抗性或荧光蛋白将被插入 V2a 特异性 Chx10 基因下,当使用既定方案进行分化时,产生纯的或可追踪的 ESC 衍生的 V2a 中间神经元。我们发现,与其他细胞相比,添加某些生物因子可能会显着改善中间神经元群体的成熟和功能性突触的形成。第三个目标旨在通过评估轴突萌芽、突触重建以及中间神经元特异性萌芽与运动恢复的相关性,发现内源性腹侧脊髓中间神经元对转基因报告小鼠背侧半切脊髓损伤后再生的作用。体外和体内平台确定腹侧中间神经元在脊髓中的作用
SCI 后的重新布线事件。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Author Correction: V2a interneuron differentiation from mouse and human pluripotent stem cells.
作者更正:小鼠和人类多能干细胞的 V2a 中间神经元分化。
- DOI:10.1038/s41596-019-0266-z
- 发表时间:2020
- 期刊:
- 影响因子:14.8
- 作者:Butts,JessicaC;Iyer,Nisha;White,Nick;Thompson,Russell;Sakiyama-Elbert,Shelly;McDevitt,ToddC
- 通讯作者:McDevitt,ToddC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nisha Iyer其他文献
Nisha Iyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nisha Iyer', 18)}}的其他基金
Evaluating the role of excitatory interneurons for regeneration after spinal cord injury using in vitro and in vivo transgenic models
使用体外和体内转基因模型评估兴奋性中间神经元在脊髓损伤后再生中的作用
- 批准号:
8834589 - 财政年份:2014
- 资助金额:
$ 0.58万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Genetic and molecular mechanisms of Xbp-1 mediated salivary gland development and differentiation
Xbp-1介导唾液腺发育和分化的遗传和分子机制
- 批准号:
10678146 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Neural pathways for obesity development by AgRP neurons
AgRP 神经元导致肥胖发展的神经通路
- 批准号:
10681993 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Cardiac Autonomic Activation In Atrial Fibrillation Triggers And Substrate
心房颤动的心脏自主激活触发因素和基质
- 批准号:
10636441 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别: