Mechanisms of Spliceosome Assembly and Splice Site Recognition
剪接体组装和剪接位点识别的机制
基本信息
- 批准号:8996582
- 负责人:
- 金额:$ 28.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Splice Site5&apos Splice SiteATP HydrolysisATP phosphohydrolaseAddressAlternative SplicingBindingBiochemicalBlindnessCell ExtractsCellsComplexCoupledDefectDiseaseDysmyelopoietic SyndromesEukaryotaEventExcisionExonsFluorescenceFoundationsGene ExpressionGoalsHereditary DiseaseHumanIn VitroIntronsInvestigationLaboratoriesLeadLengthLigationLinkLocationMalignant NeoplasmsMeasurementMessenger RNAMethodsModelingMolecularMonitorMuscular AtrophyMutationOutcomeOutcome StudyParticipantPathway interactionsPlayProcessPropertyProteinsRNA SequencesRNA SplicingReactionRecombinantsRecruitment ActivityResearchRoleSignal TransductionSiteSmall Nuclear RNASmall Nuclear RibonucleoproteinsSpliceosome Assembly PathwaySpliceosomesStagingStructureSystemTestingTranscriptTranslationsU1 Small Nuclear RibonucleoproteinU2 Small Nuclear RibonucleoproteinWorkYeastsdesigneffective therapygenetic informationinnovationinnovative technologiesinsightinterdisciplinary approachmRNA Precursormacromolecular assemblynovelprogramspublic health relevancereconstitutionresearch studysingle moleculetooltransmission process
项目摘要
DESCRIPTION (provided by applicant):
PROJECT SUMMARY RNA splicing-the removal of introns and ligation of exons-is an essential step in eukaryotic gene expression and must occur precisely. Precision depends on accurate recognition of the splice sites within RNAs by a macromolecular machine called the spliceosome. Spliceosomes are assembled at particular locations in transcripts from protein and small nuclear ribonucleoprotein (snRNP) components. In humans, most RNAs are alternatively spliced meaning that the spliceosome can incorporate multiple regulatory signals to control the splicing fate of a given transcript. Many of the key steps in regulating alternative splicing and splicing efficiency occur in the earliest stages of spliceosome assembly. During these steps in yeast, the 5' splice site (SS) and the branchsite (BS) are first recognized by the U1 snRNP and the BBP/Mud2 protein heterodimer, respectively. This forms the so-called commitment complex (CC) that then recruits U2 to form the pre-spliceosome. Pre-spliceosome formation is believed to determine the alternative splicing fate of many transcripts and defects in human CC and pre-spliceosome components are linked to genetic diseases including myelodysplastic syndrome (MDS). The ultimate goals of this project are to understand the pathways by which spliceosomes assemble on RNAs. While the identities of the players in these processes are known, their mechanisms of action remain unclear. Investigation of these events will lead to a better understanding of this fundamental process as well as provide new insights into diseases linked to splicing. Here, we focus on formation of the spliceosomal CC and its transition into the pre-spliceosome. In these experiments, we exploit the unique capabilities of single molecule fluorescence as our primary tool. In Aim 1, we will purify the components of CC and reconstitute its assembly in vitro. A key outcome of Aim 1 is a purified, biochemically characterized system for studying CC formation. This is a necessary step in our long-term objective of biochemically reconstituting spliceosome assembly. In Aim 2, we study the disassembly of single molecules of CC and the formation of pre-spliceosomes using a novel combination of purified components and yeast cell extracts. In Aim 3, we use a variety of approaches to study the binding and conformational dynamics of the Prp5 ATPase during pre- spliceosome formation. Together these experiments will provide much needed new insights into spliceosome assembly and the ways in which it can be regulated.
描述(由申请人提供):
项目摘要 RNA 剪接(内含子的去除和外显子的连接)是真核基因表达的重要步骤,并且必须精确发生。精度取决于称为剪接体的大分子机器对 RNA 内剪接位点的准确识别。剪接体在蛋白质和小核核糖核蛋白 (snRNP) 成分的转录物中的特定位置组装。在人类中,大多数 RNA 都是选择性剪接的,这意味着剪接体可以整合多个调节信号来控制给定转录物的剪接命运。调节选择性剪接和剪接效率的许多关键步骤发生在剪接体组装的最早阶段。在酵母中的这些步骤中,5' 剪接位点 (SS) 和分支位点 (BS) 首先分别被 U1 snRNP 和 BBP/Mud2 蛋白异二聚体识别。这形成所谓的承诺复合体 (CC),然后招募 U2 形成预剪接体。前剪接体的形成被认为决定了许多转录本的选择性剪接命运,而人类 CC 和前剪接体成分的缺陷与包括骨髓增生异常综合征 (MDS) 在内的遗传疾病有关。该项目的最终目标是了解剪接体在 RNA 上组装的途径。虽然这些过程中参与者的身份是已知的,但他们的作用机制仍不清楚。对这些事件的研究将有助于更好地理解这一基本过程,并为与剪接相关的疾病提供新的见解。在这里,我们重点关注剪接体 CC 的形成及其向剪接前体的转变。在这些实验中,我们利用单分子荧光的独特功能作为我们的主要工具。在目标 1 中,我们将纯化 CC 的成分并在体外重建其组装体。目标 1 的一个关键成果是用于研究 CC 形成的纯化、生化特征系统。这是我们生化重建剪接体组装的长期目标的必要步骤。在目标 2 中,我们使用纯化组分和酵母细胞提取物的新型组合来研究 CC 单分子的分解和预剪接体的形成。在目标 3 中,我们使用多种方法来研究剪接体前形成过程中 Prp5 ATP 酶的结合和构象动力学。这些实验将为剪接体组装及其调控方式提供急需的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Andrew Hoskins其他文献
Aaron Andrew Hoskins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Andrew Hoskins', 18)}}的其他基金
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
- 批准号:
10169637 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
- 批准号:
10378361 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Mechanisms of Spliceosome Assembly and Regulation
剪接体组装和调控机制
- 批准号:
10608952 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Mechanisms of Spliceosome Assembly and Regulation
剪接体组装和调控机制
- 批准号:
10393514 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
- 批准号:
10807767 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Administrative Supplement: Mechanisms of Spliceosome Assembly and Regulation
行政补充:剪接体组装与调控机制
- 批准号:
10797871 - 财政年份:2020
- 资助金额:
$ 28.47万 - 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8308082 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8325655 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8535781 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Single Molecule Analysis of Spliceosome Catalysis and Fidelity
剪接体催化和保真度的单分子分析
- 批准号:
7570401 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
相似国自然基金
12q13.11区易感位点通过调控COL2A1可变剪接影响骨关节炎发生的机制研究
- 批准号:82372458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
乙肝病毒5’剪接位点调节病毒转录和复制的研究
- 批准号:32370165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥ROE1蛋白介导剪接体识别内含子的5’剪接位点和调控其剪接效率的分子机理研究
- 批准号:32171293
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
由隐含剪接位点产生的EZH2新亚型的分子功能及其在心肌肥厚中的作用
- 批准号:82070231
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于结构和表观遗传信息的基因选择性剪接位点识别
- 批准号:61861036
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The role of U1 snRNP proteins in snRNP biogenesis and gene expression regulation
U1 snRNP 蛋白在 snRNP 生物发生和基因表达调控中的作用
- 批准号:
10796664 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10548142 - 财政年份:2022
- 资助金额:
$ 28.47万 - 项目类别:
Understanding the mechanism of pre-mRNA splicing
了解前体 mRNA 剪接的机制
- 批准号:
10387298 - 财政年份:2022
- 资助金额:
$ 28.47万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10894365 - 财政年份:2022
- 资助金额:
$ 28.47万 - 项目类别:
Understanding the mechanism of pre-mRNA splicing
了解前体 mRNA 剪接的机制
- 批准号:
10731756 - 财政年份:2022
- 资助金额:
$ 28.47万 - 项目类别: