Modeling genetic anencephaly with human brain organoids
用人脑类器官模拟遗传性无脑畸形
基本信息
- 批准号:10605362
- 负责人:
- 金额:$ 11.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-07 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AmniocentesisAnencephalyApicalAreaBiological ModelsBloodBlood specimenBrainCELSR1 geneCRISPR correctionCRISPR/Cas technologyCell LineCell ReprogrammingCellsCephalicChemicalsChorionic Villi SamplingChorionic villiClinicalClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsConfocal MicroscopyCongenital AbnormalityCongenital neurologic anomaliesDNADNA Sequence AlterationDevelopmentDiseaseEngineeringEnrollmentEnvironmental ExposureEtiologyFailureFamilyFertilityFetal DeathFetusFibroblastsFluorescence MicroscopyFolic AcidFrameshift MutationFutureGene MutationGenesGeneticGenetic ModelsGenomeGenome StabilityGoalsHeterogeneityHumanHuman GeneticsImageInformed ConsentInvestigationLabelLeadMeasurementMeasuresMethodsModelingMolecular ConformationMononuclearMutagenesisMutationNeonatal MortalityNeural Tube ClosureNeural Tube DefectsNeural tubeOrganoidsParentsPathway interactionsPatientsPhasePhenotypePregnancyProphylactic treatmentProteinsPublishingQuantitative Reverse Transcriptase PCRRecommendationReproducibilityResearch PersonnelSeveritiesSurfaceTechniquesTechnologyTeratogensUmbilical Cord BloodValidationVariantcausal variantcell bankclinical practiceconstrictioncraniumde novo mutationexomeexome sequencingexpectationfetalfetal medicinefolic acid supplementationgene correctiongenetic varianthuman modelin uteroinduced pluripotent stem cellinhibitorknockout genemembermouse modelneonateneurodevelopmentneuroteratogennovelplanar cell polaritypluripotencyprobandscreeningself organization
项目摘要
Abstract
Neural tube defects (NTDs) are common malformations of the nervous system that occur during pregnancy.
Anencephaly is one of the most dramatic and devastating NTDs characterized by failure of the brain and skull
to close during neurulation. It is always fatal. Recent trio exome sequencing studies have identified de novo
genetic mutations (DNMs) in anencephalic fetuses, and some of these mutations have been in genes
associated with anencephaly in genetic mouse models. For these reasons, DNMs are beginning to be
considered an important factor in the etiology of anencephaly and other NTDs. However, current model
systems do not easily allow for directly validating that these variants lead to NTDs. Having a human-specific
model of early neurodevelopment would allow for these types of conformational studies and further
mechanistic investigations. Attempts to utilize human brain organoid technology to this end are limited due to
structural heterogeneity and intra-organoid variability. Our recent development of reproducible self-organizing
single rosette spheroids (SOSRS) from human induced pluripotent stem cells has allowed us to treat SOSRS
with two known neuroteratogens and observe distinct structural changes consistent with NTDs. The goal in
Aim 1 is to generate a model of anencephaly by knocking out genes known to lead to anencephaly
(SHROOM3 and CELSR1) in SOSRS and characterize structural signatures indicative of NTDs. In Aim 2, we
will generate fetal-specific models. To this end, we will enroll families with anencephalic fetuses to obtain blood
samples, cord blood, and/or amniocentesis. Blood DNA will be used to perform trio exome sequencing to
identify DNMs. Cells from the cord blood or amniocentesis from anencephalic fetuses with likely causative
DNMs will be reprogrammed into iPSCs. The potentially causative mutations will also be corrected by
CRISPR/Cas9 to generate isogenic controls. Finally, SOSRS from these models will be generated and
measured for phenotypes identified in the proof-of-principle anencephalic models. Our study will likely shed
light on the mechanisms of human anencephaly and allow for screening novel DNMs for NTD causality, thus,
greatly expanding our understanding of human NTD genetics. Furthermore, our collaboration of basic
researchers with clinicians specializing in genetics of maternal and fetal medicine will provide a framework for
rapid modeling of clinical cases, potentially resulting in altered clinical practices including fertility
recommendations and the utility of prophylactic treatments, such as folate supplementation.
抽象的
神经管缺陷(NTD)是妊娠期间发生的常见神经系统畸形。
无脑畸形是最严重和最具破坏性的 NTD 之一,其特征是大脑和头骨衰竭
在神经调节期间关闭。这总是致命的。最近的三重外显子组测序研究已经确定了从头
无脑胎儿的基因突变(DNM),其中一些突变发生在基因中
与遗传小鼠模型中的无脑畸形有关。由于这些原因,DNM 开始被
被认为是无脑畸形和其他 NTD 病因的重要因素。然而,目前的模型
系统不容易直接验证这些变异是否会导致 NTD。具有人类特有的
早期神经发育模型将允许进行这些类型的构象研究并进一步
机制研究。为此目的利用人脑类器官技术的尝试受到限制,因为
结构异质性和类器官内的变异性。我们最近开发的可重复自组织
来自人类诱导多能干细胞的单莲座球体 (SOSRS) 使我们能够治疗 SOSRS
与两种已知的神经致畸剂进行实验,并观察到与 NTD 一致的明显结构变化。目标在
目标 1 是通过敲除已知导致无脑畸形的基因来生成无脑畸形模型
(SHROOM3 和 CELSR1)在 SOSRS 中并表征了指示 NTD 的结构特征。在目标 2 中,我们
将生成胎儿特定的模型。为此,我们将招募有无脑胎儿的家庭来获取血液
样本、脐带血和/或羊膜穿刺术。血液 DNA 将用于进行三重外显子组测序
识别 DNM。来自脐带血或无脑胎儿羊膜穿刺术的细胞,可能是致病原因
DNM 将被重新编程为 iPSC。潜在的致病突变也将通过以下方式得到纠正:
CRISPR/Cas9 用于生成等基因对照。最后,将生成来自这些模型的 SOSRS 并
测量原理验证无脑模型中识别的表型。我们的研究可能会减少
阐明人类无脑畸形的机制,并允许筛选新的 DNM 以发现 NTD 因果关系,因此,
极大地扩展了我们对人类 NTD 遗传学的理解。此外,我们的基本合作
研究人员与专门从事母婴医学遗传学的临床医生合作,将提供一个框架
临床病例的快速建模,可能会改变包括生育在内的临床实践
建议和预防性治疗的效用,例如补充叶酸。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects.
神经管缺陷脑类器官模型中丙戊酸和 SHROOM3 敲除的共同致病机制。
- DOI:
- 发表时间:2023-04-11
- 期刊:
- 影响因子:0
- 作者:Takla, Taylor N;Luo, Jinghui;Sudyk, Roksolana;Huang, Joy;Walker, J Clayton;Vora, Neeta L;Sexton, Jonathan Z;Parent, Jack M;Tidball, Andrew M
- 通讯作者:Tidball, Andrew M
A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects.
神经管缺陷脑类器官模型中丙戊酸和 SHROOM3 敲除的共同致病机制。
- DOI:
- 发表时间:2023-06-23
- 期刊:
- 影响因子:6
- 作者:Takla, Taylor N;Luo, Jinghui;Sudyk, Roksolana;Huang, Joy;Walker, John Clayton;Vora, Neeta L;Sexton, Jonathan Z;Parent, Jack M;Tidball, Andrew M
- 通讯作者:Tidball, Andrew M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew M Tidball其他文献
Andrew M Tidball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew M Tidball', 18)}}的其他基金
Modeling genetic anencephaly with human brain organoids
用人脑类器官模拟遗传性无脑畸形
- 批准号:
10370452 - 财政年份:2022
- 资助金额:
$ 11.69万 - 项目类别:
Evaluating teratogenic risk of anti-seizure medications in single-rosette brain organoids
评估单莲座脑类器官中抗癫痫药物的致畸风险
- 批准号:
10491352 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
Evaluating teratogenic risk of anti-seizure medications in single-rosette brain organoids
评估单莲座脑类器官中抗癫痫药物的致畸风险
- 批准号:
10315793 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
Exploring Disease-Toxicant Interactions in a Human Huntington's Disease Model
探索人类亨廷顿病模型中的疾病与毒性相互作用
- 批准号:
8501026 - 财政年份:2012
- 资助金额:
$ 11.69万 - 项目类别:
Exploring Disease-Toxicant Interactions in a Human Huntington's Disease Model
探索人类亨廷顿病模型中的疾病与毒性相互作用
- 批准号:
8670787 - 财政年份:2012
- 资助金额:
$ 11.69万 - 项目类别:
Exploring Disease-Toxicant Interactions in a Human Huntington's Disease Model
探索人类亨廷顿病模型中的疾病与毒性相互作用
- 批准号:
8396851 - 财政年份:2012
- 资助金额:
$ 11.69万 - 项目类别:
相似国自然基金
PCP通路相关基因罕见变异及异常甲基化与胎儿无脑畸形的关联研究
- 批准号:81472987
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
Modeling genetic anencephaly with human brain organoids
用人脑类器官模拟遗传性无脑畸形
- 批准号:
10370452 - 财政年份:2022
- 资助金额:
$ 11.69万 - 项目类别:
Evaluating teratogenic risk of anti-seizure medications in single-rosette brain organoids
评估单莲座脑类器官中抗癫痫药物的致畸风险
- 批准号:
10491352 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
Evaluating teratogenic risk of anti-seizure medications in single-rosette brain organoids
评估单莲座脑类器官中抗癫痫药物的致畸风险
- 批准号:
10315793 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
C. elegans gastrulation: A model for understanding apical constriction mechanisms
线虫原肠胚形成:了解顶端收缩机制的模型
- 批准号:
10544992 - 财政年份:2020
- 资助金额:
$ 11.69万 - 项目类别:
C. elegans gastrulation: A model for understanding apical constriction mechanisms
线虫原肠胚形成:了解顶端收缩机制的模型
- 批准号:
10077566 - 财政年份:2020
- 资助金额:
$ 11.69万 - 项目类别: