Epigenetic mechanisms underlying sex differences in obesity
肥胖性别差异背后的表观遗传机制
基本信息
- 批准号:10606954
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAccelerationAdipocytesAdipose tissueAllelesAnimalsAutomobile DrivingBiologyBlood VesselsBody WeightBody Weight decreasedBody fatCalorimetryCell physiologyCellsChIP-seqChemicalsChromatin StructureComplementDevelopmentEatingEnvironmentEnzymesEpigenetic ProcessFatty acid glycerol estersFemaleFoundationsGene DeletionGene DosageGene ExpressionGene Expression RegulationGenesGeneticGenomeGenomicsGoalsGonadal HormonesHistonesHormonalHormonesHumanIn VitroLaboratoriesLipidsLipolysisLiverLysineMenopauseMetabolicMetabolic DiseasesMetabolic syndromeMetabolismMitochondriaModelingMolecularMusObesityOvarian hormoneOvariectomyPhysiologicalPhysiologyPloidiesPositioning AttributePostmenopausePrevalenceProliferatingPropertyResearchResearch PersonnelResourcesRiskRoleScientistSex ChromosomesSex DifferencesSkeletal MuscleTissuesTrainingWeight GainWomanX ChromosomeX Inactivationadipocyte biologyadiponectinblood glucose regulationcareerdisorder riskdosageenergy balanceexperiencehistone demethylasehistone methylationimprovedin vivolipid biosynthesismalemenmouse modelovarian failuresexsingle-cell RNA sequencing
项目摘要
PROJECT SUMMARY
The physiological and functional properties of adipose tissue differ between females and males, which
leads to differences in obesity and metabolic syndrome risk between the sexes. While the gonadal hormones
contribute to these physiological sex differences, the Reue lab has demonstrated that the presence of XX or XY
sex chromosomes further impacts adipose development and function in a sex-dependent manner. Specifically,
the presence of two X chromosomes causes higher body weight and adiposity compared to XY animals. When
two X chromosomes are present, genes on one X chromosome are inactivated to normalize gene expression to
XY cells. However, a subset of these X chromosome genes escape inactivation resulting in higher expression in
XX cells compared to XY cells. This leads to the hypothesis that higher X chromosome gene dosage impacts
sex differences in adiposity. We identified two X chromosome genes, Kdm5c and Kdm6a, that impact adiposity
in vivo by altering preadipocyte and mature adipocyte cellular function, respectively. Reduction of Kdm5c gene
dosage in preadipocytes decreased body weight and adiposity, while reduced Kdm5c gene dosage in mature
adipocytes had no impact on body weight or adiposity. Conversely, reduction of Kdm6a gene dosage in mature
adipocytes reduced body weight and adiposity. Both Kdm5c and Kdm6a encode histone demethylase enzymes
that modify chromatin structure to regulate gene expression across the genome. Thus, the combined actions of
KDM5C in preadipocytes and KDM6A in mature adipocytes may coalesce to impact total adiposity in XX animals.
The proposed studies will elucidate the mechanisms by which KDM5C and KDM6A influence sex differences in
adiposity and metabolism through studies of mouse models with altered gene dosage, and in cultured adipocytes
to identify KDM5C and KDM6A genomic targets. There are three Specific Aims: 1. Uncover physiological
mechanisms by which Kdm6a dosage alters adiposity in vivo. 2. Identify KDM5C and KDM6A genomic targets
in white adipose tissue. 3. Determine the contribution of Kdm5c and Kdm6a gene dosage to weight gain and
increased adiposity in mouse menopause models. Completion of the proposed studies will significantly improve
our understanding of physiological and molecular mechanisms that regulate sex differences in obesity and
metabolic disease.
The proposed research and training plan will prepare me to transition into an independent investigator
position with a research emphasis on understanding genetic mechanisms driving sex differences in metabolism.
The training in sex differences and adipose tissue biology research in the Reue lab will complement my prior
research experience in metabolic disease and gene regulation to achieve my career goals. The extensive
resources available within the UCLA research environment will further promote my professional development to
accelerate my path to independence as an academic scientist. Importantly, the proposed research provides a
foundation for my independent research, with an emphasis on Kdm6a, as I transition into independence.
项目概要
女性和男性脂肪组织的生理和功能特性不同,这
导致性别之间肥胖和代谢综合征风险的差异。虽然性腺激素
导致这些生理性别差异的原因是,Reue 实验室已证明 XX 或 XY 的存在
性染色体以性别依赖性方式进一步影响脂肪的发育和功能。具体来说,
与 XY 动物相比,两条 X 染色体的存在会导致更高的体重和肥胖。什么时候
存在两条 X 染色体,一条 X 染色体上的基因失活以使基因表达正常化
XY 细胞。然而,这些 X 染色体基因的一个子集逃脱了失活,导致在
XX 细胞与 XY 细胞相比。这导致了这样的假设:较高的 X 染色体基因剂量会影响
肥胖的性别差异。我们确定了两个影响肥胖的 X 染色体基因 Kdm5c 和 Kdm6a
在体内分别通过改变前脂肪细胞和成熟脂肪细胞的细胞功能。 Kdm5c 基因减少
前脂肪细胞中的剂量降低了体重和肥胖,同时降低了成熟细胞中 Kdm5c 基因的剂量
脂肪细胞对体重或肥胖没有影响。相反,成熟细胞中 Kdm6a 基因剂量的减少
脂肪细胞减少体重和肥胖。 Kdm5c 和 Kdm6a 均编码组蛋白去甲基酶
改变染色质结构以调节整个基因组的基因表达。因此,联合行动
前脂肪细胞中的 KDM5C 和成熟脂肪细胞中的 KDM6A 可能联合影响 XX 动物的总肥胖。
拟议的研究将阐明 KDM5C 和 KDM6A 影响性别差异的机制
通过基因剂量改变的小鼠模型和培养脂肪细胞的研究来研究肥胖和代谢
鉴定 KDM5C 和 KDM6A 基因组靶标。具体目标有三个: 1. 揭示生理学
Kdm6a 剂量改变体内肥胖的机制。 2. 识别 KDM5C 和 KDM6A 基因组靶标
存在于白色脂肪组织中。 3.确定Kdm5c和Kdm6a基因剂量对体重增加的贡献和
小鼠更年期模型的肥胖增加。完成拟议的研究将显着改善
我们对调节肥胖性别差异的生理和分子机制的理解
代谢性疾病。
拟议的研究和培训计划将使我做好过渡为独立调查员的准备
其研究重点是了解驱动新陈代谢性别差异的遗传机制。
Reue 实验室的性别差异和脂肪组织生物学研究培训将补充我之前的经验
在代谢疾病和基因调控方面的研究经验,以实现我的职业目标。广泛的
加州大学洛杉矶分校研究环境中的可用资源将进一步促进我的专业发展
加速我作为一名学术科学家的独立之路。重要的是,拟议的研究提供了
当我过渡到独立时,为我的独立研究奠定了基础,重点是 Kdm6a。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie Beth Wiese其他文献
Carrie Beth Wiese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
PDGFRB Signaling in Progressive Skin Disease
进行性皮肤病中的 PDGFRB 信号传导
- 批准号:
10583948 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Human adipose tissue in control of sympathetic tone and metabolic rate
人类脂肪组织控制交感神经张力和代谢率
- 批准号:
10749552 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Novel Posttranslational Modifications in Adipose Biology
脂肪生物学中的新型翻译后修饰
- 批准号:
10780577 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Novel bioengineering models to dissect cardiac cell-cell defects in arrhythmogenic cardiomyopathy
剖析致心律失常性心肌病心肌细胞缺陷的新型生物工程模型
- 批准号:
10667062 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Investigating the interplay between hallmarks of aging; protein glycation, nutrient sensing, and senescence
研究衰老特征之间的相互作用;
- 批准号:
10901045 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别: