Intracellular signaling mechanisms underlying opioid modulation of pain
阿片类药物调节疼痛的细胞内信号机制
基本信息
- 批准号:10607143
- 负责人:
- 金额:$ 5.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAcuteAdenylate CyclaseAffectAffectiveAgonistAnalgesicsAnteriorBehaviorBehavioral AssayBrain regionCellsChronicComplexCoupledCyclic AMPCyclic AMP-Dependent Protein KinasesDendritesFluorescence Resonance Energy TransferFluorescent in Situ HybridizationGTP-Binding ProteinsGoalsHourHyperalgesiaImageIn VitroInterneuronsLabelMeasuresMediatingMembraneMethodologyModelingMorphineMotivationMusNatureNeuronsOpioidOpioid ReceptorOpioid agonistPainPain MeasurementPathway interactionsPeptidesPlayPositioning AttributeProductionPropertyProtein DynamicsProtein Kinase A InhibitorPublic HealthReceptor ActivationRegulationResearchResolutionRewardsRoleSensorySignal PathwaySignal TransductionSiteSpecificitySynapsesTestingThalamic structureWorkaddictionantagonistbehavioral studybrain cellcell typecingulate cortexdermorphindesignexperimental studyfluorescence lifetime imaginghippocampal pyramidal neuronin vivoin vivo imaginginsightinterestmorphine administrationmu opioid receptorsnegative affectneuronal cell bodynovelopioid exposureopioid use disorderpain behaviorpain reliefphotoactivationreceptorreceptor expressionregional differenceresponsesensorsensory integrationspatiotemporalstemtwo-photon
项目摘要
PROJECT SUMMARY
Opioid use disorder is a public health crisis that stems from the highly addictive nature and potent
analgesic properties of opioids. Opioids modulate circuitry involved in analgesia, pain-induced negative
affect, motivation, reward, and addiction. They act on G-protein coupled opioid receptors, inducing multiple
intracellular signaling pathways. Of these, the cyclic adenosine monophosphate (cAMP) and protein
kinase A (PKA) pathway is known to be a key mechanism in analgesia, pain-related aversion, and opioid-
induced hyperalgesia. Most studies examining PKA signaling in response to opioids or pain are limited by
in vitro or ex vivo approaches that cannot simultaneously consider cell-type specific PKA signaling,
complex circuit-level regulation, and effects of behavior on PKA dynamics. As a result, it remains unclear
exactly where and when PKA is modulated in response to opioids; nor is it clear what the functional effects
of these spatiotemporal PKA dynamics are on analgesia. Understanding the functional significance of
opioid-induced intracellular signaling and how this signaling differs in unique cell types and brain regions
will allow us to better comprehend how opioids differentially effect pain and addiction circuitry. The goals
of this proposal are as follows: First, I will define the temporal dynamics of mu opioid-induced PKA
signaling within the mediodorsal thalamus (MD) to anterior cingulate cortex (ACC) circuitry. This circuitry
highly expresses mu opioid receptors and integrates sensory and affective pain. Then, I will determine
whether there is a causal relationship between these PKA dynamics and pain relief. Finally, I will examine
the cell-type specificity of these PKA dynamics. My central hypothesis is that PKA dynamics will depend
on the duration of opioid exposure and will determine the extent of pain response, with specific cell types
acting as key sites of PKA modulation. This hypothesis will be tested using a novel genetically encoded
sensor designed for in vivo imaging of PKA activity in behaving mice. To examine regional differences in
temporal PKA dynamics in response to acute and chronic opioid exposure, PKA will be imaged before,
during, and after opioid administration in the MD and ACC. Imaging will be paired with pain assays to
assess analgesia and hyperalgesia. To test the necessity and sufficiency of PKA dynamics in pain relief,
PKA activity will be modulated by either a genetically encoded PKA inhibitor or photoactivatable adenylyl
cyclase while conducting behavioral assays of pain. Finally, to examine the cell-specificity of PKA
dynamics, sensor expression will be isolated to each cell type of interest in a Cre-dependent manner, and
peptide agonists and antagonists of mu opioid receptors will be locally infused during PKA imaging. This
study will define how PKA signaling in specific components of the MD to ACC circuitry both responds to
opioids and mediates pain relief. Achieving these goals will provide insight into how intracellular signaling
is spatiotemporally regulated by opioids and facilitates analgesia.
项目概要
阿片类药物使用障碍是一场公共卫生危机,其根源在于其高度成瘾性和强效性。
阿片类药物的镇痛特性。阿片类药物调节参与镇痛、疼痛引起的负性镇痛的电路
影响、动机、奖励和成瘾。它们作用于 G 蛋白偶联阿片受体,诱导多种
细胞内信号通路。其中,环磷酸腺苷 (cAMP) 和蛋白质
众所周知,激酶 A (PKA) 通路是镇痛、疼痛相关厌恶和阿片类药物的关键机制。
诱发痛觉过敏。大多数检查 PKA 信号对阿片类药物或疼痛反应的研究都受到以下限制:
体外或离体方法不能同时考虑细胞类型特异性 PKA 信号传导,
复杂的电路级调节以及行为对 PKA 动态的影响。结果目前还不清楚
确切地说,PKA 是在何时何地针对阿片类药物进行调节的;也不清楚功能效果如何
这些时空 PKA 动力学的一部分与镇痛有关。了解功能意义
阿片类药物诱导的细胞内信号传导以及该信号传导在独特的细胞类型和大脑区域中的差异
将使我们更好地理解阿片类药物如何对疼痛和成瘾回路产生不同的影响。目标
该提案的内容如下:首先,我将定义 mu 阿片类药物诱导的 PKA 的时间动态
内侧丘脑 (MD) 内的信号传导至前扣带皮层 (ACC) 电路。这个电路
高度表达 mu 阿片受体并整合感觉和情感疼痛。然后,我会确定
这些 PKA 动态与疼痛缓解之间是否存在因果关系。最后,我将检查
这些 PKA 动力学的细胞类型特异性。我的中心假设是 PKA 动力学将取决于
取决于阿片类药物暴露的持续时间,并将确定特定细胞类型的疼痛反应程度
作为 PKA 调节的关键位点。该假设将使用一种新颖的基因编码进行测试
传感器设计用于对行为小鼠的 PKA 活性进行体内成像。考察区域差异
响应急性和慢性阿片类药物暴露的时间 PKA 动态,PKA 将在之前成像,
在 MD 和 ACC 中使用阿片类药物期间和之后。影像学检查将与疼痛检测相结合
评估镇痛和痛觉过敏。为了测试 PKA 动力学在缓解疼痛方面的必要性和充分性,
PKA 活性将由基因编码的 PKA 抑制剂或光活化腺苷酸调节
环化酶,同时进行疼痛行为测定。最后,检查 PKA 的细胞特异性
动力学,传感器表达将以 Cre 依赖性方式与每种感兴趣的细胞类型分离,并且
mu阿片受体的肽激动剂和拮抗剂将在PKA成像期间局部输注。这
研究将确定 MD 至 ACC 电路特定组件中的 PKA 信号如何响应
阿片类药物并介导疼痛缓解。实现这些目标将深入了解细胞内信号传导如何
受阿片类药物的时空调节并促进镇痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Landon Bayless-Edwards其他文献
Landon Bayless-Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Enhancement of the endogenous opioid system by ketamine
氯胺酮增强内源性阿片系统
- 批准号:
10717708 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
The role of delta opioid receptors in trigeminovascular pain
δ阿片受体在三叉血管疼痛中的作用
- 批准号:
10608549 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
KATP Channels as Downstream targets of adenylyl cyclases during opioid tolerance and withdrawal
KATP 通道作为阿片类药物耐受和戒断期间腺苷酸环化酶的下游靶标
- 批准号:
10618258 - 财政年份:2021
- 资助金额:
$ 5.52万 - 项目类别:
Inflammatory injury-mediated synaptic plasticity in the periaqueductal gray
导水管周围灰质炎症损伤介导的突触可塑性
- 批准号:
10490262 - 财政年份:2021
- 资助金额:
$ 5.52万 - 项目类别:
Inflammatory injury-mediated synaptic plasticity in the periaqueductal gray
导水管周围灰质炎症损伤介导的突触可塑性
- 批准号:
10285503 - 财政年份:2021
- 资助金额:
$ 5.52万 - 项目类别: