Probing the architecture, assembly, and function of amyloid-polysaccharide entanglements in bacterial biofilms
探究细菌生物膜中淀粉样蛋白-多糖缠结的结构、组装和功能
基本信息
- 批准号:10605820
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdhesivesAmmoniumAmyloidAmyloid ProteinsAmyloid fibersAnti-Bacterial AgentsAnti-Infective AgentsAntibioticsArchitectureArginineBacteriaBacterial PolysaccharidesBindingBiochemicalBiological AssayBiophysicsBiopolymersCell surfaceCellsCelluloseChemicalsCommunitiesCreativenessDetectionDevelopmentDiffusionDiseaseDisinfectantsEscherichia coliEvaluationEventExhibitsExtracellular MatrixExtracellular ProteinFellowshipFluorescence MicroscopyFoundationsFutureHuman MicrobiomeInfectionInstitutionInvestigationIsotope LabelingLinkMagnetic ResonanceMechanicsMentorshipMicrobial BiofilmsModificationMolecularNMR SpectroscopyNatureNuclear Magnetic ResonanceOrganismPathogenesisPathologyPolymersPolysaccharidesProductionResearchResearch Project GrantsRoleSalmonellaSalmonella entericaSamplingStructureSymbiosisTestingTimeTissuesTrainingUniversitiesUrinary tractVancomycinVisualizationWestern BlottingWorkbacterial communitycell communityclinically relevantcohesioncommensal bacteriadesignefficacy evaluationexhaustexperimental studyextracellularimmunoregulationin vivomembermicrobialmicrobiomemultidisciplinarymutantnovelpathogenpathogenic bacteriaphosphoethanolaminepressurerecruitsolid state nuclear magnetic resonance
项目摘要
Project Summary
Bacteria are most commonly found in nature in multicellular communities termed biofilms. Biofilms are formed
when bacteria synthesize, secrete, and enmesh themselves with diverse biopolymers. Beneficial bacteria in the
microbiome assemble biofilms, while biofilms are unfortunately also linked to difficult-to-treat infections that
exhibit increased tolerance to antibacterials and can exhaust treatment options. However, there are no blueprints
for how bacteria build these tissue-like architectures and uncovering these details can accelerate discovery of
new anti-infectives. E. coli, in particular, are normal residents in the healthy microbiome, but emerge as
pathogens when they egress and colonize the urinary tract. E. coli, Salmonella species and other Gram-negative
organisms harness specific amyloid and polysaccharide machinery to elaborate mechanically robust
extracellular matrix architectures resembling baskets and blankets that surround cells and drive the formation of
tissue-like biofilms. Due to the complexity of biopolymer composites, there are significant challenges associated
with studying their structure and function, yet the ubiquity of these biopolymers makes them of high importance
for study. This research plan is directed to test molecular hypotheses for how bacteria employ curli and
phosphoethanolamine cellulose, a newly discovered chemically modified form of cellulose, to enmesh
themselves in extracellular matrix (ECM). The research plan will test hypotheses regarding functional roles that
we propose are ascribed to the zwitterionic phosphoethanolamine modification. Aim 1 is directed to evaluate the
temporal and spatial developments of matrix assembly beyond the bacterial cell surface using fluorescence
microscopy and creative functional biochemical assays. Aim 2 will implement a strategically designed solid-state
nuclear magnetic resonance (NMR) approach to detect molecular contacts between polysaccharides and protein
amyloids that are responsible for matrix cohesion. The functional benefit of ECM biopolymers will be determined
in Aim 3, where clinically relevant antibiotics and a novel vancomycin-conjugate will be evaluated for efficacy
against pEtN cellulose and curli containing biofilms. This work promises to formulate a molecular foundation for
future avenues of inquiry at the host-pathogen interface, involving possible immunomodulatory roles of bacterial
polysaccharides and amyloids, and possible biopolymer contributions to microbiome symbiosis and amyloid-
associated disease pathologies. The fellowship candidate will receive significant training in solid-state NMR
spectroscopy to study molecular interactions within E. coli biofilms and biochemical approaches to investigate
bacterial communities. The considerable support and mentorship structure provided through this fellowship, the
research sponsor (Prof. Lynette Cegelski) and institution (Stanford University) will facilitate the professional
development of the fellowship applicant and the rigorous scientific investigation of the proposed research.
项目概要
细菌最常见于自然界的多细胞群落中,称为生物膜。生物膜形成
当细菌合成、分泌并与不同的生物聚合物结合时。体内的有益细菌
微生物组组装生物膜,而不幸的是,生物膜也与难以治疗的感染有关
对抗菌药物表现出更高的耐受性,并且可能耗尽治疗选择。然而并没有蓝图
了解细菌如何构建这些类似组织的结构,揭示这些细节可以加速发现
新的抗感染药。尤其是大肠杆菌,是健康微生物组中的正常居民,但以
当病原体排出并定植于尿道时。大肠杆菌、沙门氏菌和其他革兰氏阴性菌
生物体利用特定的淀粉样蛋白和多糖机制来制造机械坚固的
细胞外基质结构类似于篮子和毯子,围绕细胞并驱动细胞的形成
组织样生物膜。由于生物聚合物复合材料的复杂性,相关的重大挑战
随着研究它们的结构和功能,这些生物聚合物的普遍存在使得它们具有高度重要性
用于学习。该研究计划旨在测试细菌如何利用卷曲和
磷酸乙醇胺纤维素,一种新发现的化学改性形式的纤维素,可将
它们本身位于细胞外基质(ECM)中。该研究计划将测试有关功能角色的假设,
我们认为归因于两性离子磷酸乙醇胺修饰。目标 1 旨在评估
使用荧光研究细菌细胞表面之外的基质组装的时间和空间发展
显微镜和创造性的功能生化测定。目标 2 将实施战略设计的固态
核磁共振 (NMR) 方法检测多糖和蛋白质之间的分子接触
负责基质凝聚的淀粉样蛋白。 ECM 生物聚合物的功能优势将被确定
目标 3,将评估临床相关抗生素和新型万古霉素结合物的疗效
针对含有 pEtN 纤维素和 curli 的生物膜。这项工作有望为以下方面奠定分子基础:
宿主-病原体界面的未来研究途径,涉及细菌可能的免疫调节作用
多糖和淀粉样蛋白,以及生物聚合物对微生物共生和淀粉样蛋白的可能贡献
相关疾病病理。奖学金候选人将接受固态核磁共振方面的重要培训
利用光谱学研究大肠杆菌生物膜内的分子相互作用,并利用生化方法进行研究
细菌群落。通过该奖学金提供的大量支持和指导结构,
研究赞助者(Lynette Cegelski 教授)和机构(斯坦福大学)将促进专业人士
奖学金申请人的发展以及对拟议研究的严格科学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schuyler A. Chambers其他文献
Synthetic Ellagic Acid Glycosides Inhibit Early-Stage Adhesion of Streptococcus agalactiae Biofilms as Observed by Scanning Electron Microscopy.
通过扫描电子显微镜观察到,合成鞣花酸苷抑制无乳链球菌生物膜的早期粘附。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Schuyler A. Chambers;J. Gaddy;Steven D. Townsend - 通讯作者:
Steven D. Townsend
Analysis of the antimicrobial and anti-biofilm activity of human milk lactoferrin compared to bovine lactoferrin against multi drug resistant and susceptible Acinetobacter baumannii clinical isolates
人乳乳铁蛋白与牛乳铁蛋白相比对多重耐药和敏感鲍曼不动杆菌临床分离株的抗菌和抗生物膜活性分析
- DOI:
10.1210/me.2010-0156 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tyra M. Avery;Ranashia L. Boone;Jacky Lu;Sabrina K. Spicer;Miriam A. Guevara;Rebecca E. Moore;Schuyler A. Chambers;S. Manning;L. Dent;Dana;Marshall;S. Damo;Steven D. Townsend;J. Gaddy - 通讯作者:
J. Gaddy
Bioorthogonal human milk oligosaccharide probes for antimicrobial target identification within Streptococcus agalactiae.
用于无乳链球菌内抗菌靶标识别的生物正交母乳寡糖探针。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Schuyler A. Chambers;Steven D. Townsend - 通讯作者:
Steven D. Townsend
A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim
B 族链球菌抗叶酸耐药性的解决方案:非靶向代谢组学鉴定了母乳寡糖引起的扰动,导致甲氧苄啶增强
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.4
- 作者:
Schuyler A. Chambers;Rebecca E. Moore;Kelly M. Craft;Harrison C. Thomas;R. Das;S. Manning;S. Codreanu;S. Sherrod;D. Aronoff;J. McLean;J. Gaddy;Steven D. Townsend - 通讯作者:
Steven D. Townsend
Molecular insights into phosphoethanolamine cellulose formation and secretion
磷酸乙醇胺纤维素形成和分泌的分子见解
- DOI:
10.1101/2024.04.04.588173 - 发表时间:
2024-04-08 - 期刊:
- 影响因子:0
- 作者:
Preeti Verma;Ruoya Ho;Schuyler A. Chambers;L. Cegelski;Jochen Zimmer - 通讯作者:
Jochen Zimmer
Schuyler A. Chambers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
- 批准号:
10637562 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Commercialization of an Improved Treatment of Extremity Fractures Using a Regenerative Bone Adhesive to Accelerate Bone Healing in Aging Patients
使用再生骨粘合剂加速老年患者骨愈合的四肢骨折改进治疗方法的商业化
- 批准号:
10822079 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:
10736334 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Strain-Programmed Bioadhesive Patch for Enhanced Diabetic Wound Healing
用于增强糖尿病伤口愈合的应变程序生物粘附贴片
- 批准号:
10818916 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: