Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
基本信息
- 批准号:10601090
- 负责人:
- 金额:$ 41.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAlzheimer&aposs DiseaseAminesAtherosclerosisBindingBiologicalBiological MarkersBiomedical ResearchBiophysicsCellsChemicalsDegenerative polyarthritisDevelopmentDiabetes MellitusDiagnosisDiseaseEnzymatic BiochemistryEnzymesEventExcisionFructosamineFundingGoalsHomologous GeneHybridsKRP proteinKineticsLifeLinkMalignant NeoplasmsMediatingModificationMolecularNon-Insulin-Dependent Diabetes MellitusOrganismPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalPolysaccharidesPost-Translational Protein ProcessingProcessProteinsProteomeReactionRegulationResolutionRoleSiteSystems BiologyTechniquesTreesUbiquitinationWorkWritingglycationhuman diseaseimprovedinsightinterdisciplinary approachlink proteinnervous system disorderprotein protein interactionprotein structurerepairedstructural biologysugar
项目摘要
Project Summary/Abstract
Organisms across all domains of life decorate their protein molecules with an incredible diversity of
chemical modifications. Modifications on proteins are critical for their function, affecting protein structure, stability,
and interaction partners. Many of the proteins and the enzymes that read, write, and erase these modifications
are closely tied to human diseases ranging from neurological disorders to cancer to type 2 diabetes. While these
proteins and pathways can be targets to treat these diseases, we lack a high-resolution, mechanistic
understanding of how the cell installs, recognizes, and leverages certain post-translational modifications,
specifically ubiquitination and spontaneous, non-enzymatic modifications. Our lab is working to understand how
protein-protein interactions dynamically regulate post-translational modifications to alter proteome landscape
and impact human disease.
Protein glycation is an understudied post-translational modification that arises when a sugar covalently
attaches to a primary amine. This process occurs spontaneously under normal physiological conditions and is a
bio-marker in aging and the development, or worsening, of diseases such as diabetes, Alzheimer's disease,
osteoarthritis, and atherosclerosis. Early glycation events are reversible and represent one of the few protein
repair mechanisms in the cell. Deglycation is mediated by an unusual “hybrid” kinase/deglycase called
Fructosamine-3-kinase (FN3K). FN3K facilitates the removal of protein-linked glycans by directly
phosphorylating the attached sugar and destabilizing the sugar-protein linkage. FN3K and FN3K homologs are
found in all branches of the tree of life. The glycation of intracellular proteins is not well studied, yet the
conservation of FN3K and FN3K-related proteins underscores an important biological role for these enzymes. In
this project, my lab will use a multidisciplinary approach, including techniques and expertise in structural biology,
enzymology, and systems biology, to address sharply focused mechanistic questions regarding FN3K-mediate
protein repair. We hypothesize that an improved mechanistic understanding of FN3K will reveal new biological
insight into this ancient repair process, and that we can leverage this insight to better diagnose and treat diseases
associated with elevated glycation. In order to distinguish our contributions from those of others, we will integrate
reductionist and global approaches to develop a deeper and more complete understanding of the regulation and
repair of glycated proteins. Over the five-year funding period, the goals of this project are to: (i) determine the
structural and biophysical basis for FN3K-mediated protein repair (ii) systematically characterize the binding
kinetics and enzymatic activity of FN3K and FN3K-RP on diverse substrates; (iii) identify sites-specific FN3K
deglycation sites and their potential cross-talk with other PTMs. The successful completion of this work will
establish the molecular mechanisms that govern the protein deglycation repair process and will ultimately provide
needed breakthroughs in biomedical research.
项目概要/摘要
生命各个领域的生物体以令人难以置信的多样性来装饰它们的蛋白质分子
蛋白质的化学修饰对其功能至关重要,影响蛋白质的结构、稳定性、
许多蛋白质和酶可以读取、写入和擦除这些修饰。
与从神经系统疾病到癌症再到 2 型糖尿病等人类疾病密切相关。
蛋白质和通路可以作为治疗这些疾病的靶标,但我们缺乏高分辨率的机制
了解细胞如何安装、识别和利用某些翻译后修饰,
特别是泛素化和自发的非酶修饰,我们的实验室正在努力了解其中的原理。
蛋白质-蛋白质相互作用动态调节翻译后修饰以改变蛋白质组景观
并影响人类疾病。
蛋白质糖化是一种尚未充分研究的翻译后修饰,当糖与糖共价结合时就会产生这种修饰。
该过程在正常生理条件下自发发生,并且是一个伯胺。
衰老和糖尿病、阿尔茨海默氏病等疾病的发展或恶化的生物标志物
骨关节炎和动脉粥样硬化早期糖化事件是可逆的,是少数蛋白质之一。
细胞中的修复机制是由一种不寻常的“混合”激酶/去糖酶介导的。
果糖胺-3-激酶 (FN3K) 可直接促进蛋白质连接聚糖的去除。
磷酸化附着的糖并破坏糖-蛋白质连接的稳定性。
细胞内蛋白质的糖化尚未得到充分研究,但存在于生命之树的所有分支中。
FN3K 和 FN3K 相关蛋白的保守性强调了这些酶的重要生物学作用。
在这个项目中,我的实验室将采用多学科方法,包括结构生物学的技术和专业知识,
酶学和系统生物学,以解决有关 FN3K 介导的尖锐的机制问题
我们追求对 FN3K 机制的改进将揭示新的生物学机制。
深入了解这个古老的修复过程,我们可以利用这种洞察力更好地诊断和治疗疾病
为了将我们的贡献与其他人的贡献区分开来,我们将整合。
还原论和全球方法,以加深和更全面地了解监管和
在五年的资助期内,该项目的目标是:(i)确定
FN3K 介导的蛋白质修复的结构和生物物理基础 (ii) 系统地表征结合
FN3K 和 FN3K-RP 在不同底物上的动力学和酶活性;(iii) 识别位点特异性 FN3K
去糖基化位点及其与其他 PTM 的潜在串扰 这项工作的成功完成将。
建立控制蛋白质去糖化修复过程的分子机制,并最终提供
生物医学研究需要突破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Binning其他文献
Jennifer Binning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Binning', 18)}}的其他基金
The role of HPV E1 in regulating the NRF2-KEAP1 pathway
HPV E1在调节NRF2-KEAP1通路中的作用
- 批准号:
10646778 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
- 批准号:
10798655 - 财政年份:2021
- 资助金额:
$ 41.18万 - 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
- 批准号:
10276570 - 财政年份:2021
- 资助金额:
$ 41.18万 - 项目类别:
Biophysical basis for enzyme mediated deglycation in protein repair
蛋白质修复中酶介导的去糖化的生物物理学基础
- 批准号:
10415210 - 财政年份:2021
- 资助金额:
$ 41.18万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别: