Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy

碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗

基本信息

  • 批准号:
    10601451
  • 负责人:
  • 金额:
    $ 27.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-16 至 2025-03-15
  • 项目状态:
    未结题

项目摘要

ABSTRACT The HIV pandemic has caused an estimated 33 million deaths to date. In the U.S. alone, 1.2 million people currently live with HIV and 34,800 new cases were diagnosed in 2019. This adds up to an estimated $16.4 billion for a lifetime of HIV treatment for patients in the U.S. HIV infects immune cells which express the CD4 and CXCR4/CCR5 co-receptors including helper T-cells. Even after a patient mounts an initial, effective immune response, the virus persists undetected by the immune system in quiescently infected CD4+ T-cells. For this reason, the primary treatment for HIV, combined antiretroviral therapy (cART), is not able to eradicate HIV from patients. Many HIV patients are able to live with continuous treatment, but this is both costly and uncertain to remain effective given the recent identification of a more virulent strain of HIV-1 in which patients suffer an accelerated loss of CD4+ T-cells. There is a critical need for innovative, efficacious therapeutics to direct a more robust immune attack of the virus. One promising strategy is to generate more active anti-HIV CD8+ cells. Chimeric Antigen Receptor-T cell (CAR- T) is a relatively new process in which patient T-cells can be programmed to attack cells expressing a target protein characteristic of a specific disease. When used with agents to make infected cells visible, it has been hypothesized that CAR-T will support the host immune system to fully eradicate HIV-infected cells. There are currently several technological limitations to the production of CAR-T cells, and the rate limiting step is transfer of genetic material into the primary T-cells to program them to eliminate cells expressing a target protein. Current methods of creating CAR-T cells demonstrate an inefficiency barring translation from the laboratory to clinical settings. Lipofection inefficiently transfects primary T-cells, and electroporation and biolistics both damage cells. Retroviruses are limited to 8-10 kb of genetic material which limits advanced applications, are toxic to cells if used at too high a dose, and are complex to construct. In addition, retroviruses integrate into their target cell’s genome which could inactivate a tumor suppressor gene and create tumors. AGTC has developed a novel method of introducing biomolecules into mammalian cells using an array of closely packed, aligned carbon nanotubes to achieve highly efficient transfer with low cytotoxicity and high capacity for genetic cargo. This technology has potential to overcome size limits of current gene-transfer technologies in addition to being simpler, faster, and more flexible. In this proposal, AGTC will (1) optimize gene transfer into primary human T-cells using carbon nanotube technology (CNT); and (2) create human anti-HIV CD8+ CAR-T cells against HIV envelope glycoprotein, gp120. Successful completion of the proposed work will enhance knowledge about CNT capabilities, and allow AGTC to proceed to further testing of the CAR-T cell product with an eye to therapeutic use in HIV positive patients.
抽象的 迄今为止,艾滋病毒大流行已导致约 3300 万人死亡,仅在美国就有 120 万人死亡。 目前感染艾滋病毒,2019 年诊断出 34,800 个新病例。这总计估计达 164 亿美元 为美国患者提供终生 HIV 治疗 HIV 感染表达 CD4 和 CD4 的免疫细胞 CXCR4/CCR5 共受体,包括辅助 T 细胞,即使在患者进行初始有效免疫后也是如此。 因此,病毒在静态感染的 CD4+ T 细胞中持续存在,未被免疫系统检测到。 原因是,艾滋病毒的主要治疗方法,即联合抗逆转录病毒疗法(cART),无法根除艾滋病毒 许多艾滋病毒患者能够通过持续治疗生存,但这对于患者来说既昂贵又不确定。 鉴于最近发现了一种毒性更强的 HIV-1 毒株,该毒株使患者遭受 CD4+ T 细胞的加速损失迫切需要创新、有效的治疗方法来指导更有效的治疗。 病毒的强大免疫攻击。 一种有前途的策略是产生更活跃的抗 HIV CD8+ 细胞(CAR-)。 T)是一个相对较新的过程,患者的 T 细胞可以被编程来攻击表达靶标的细胞 当与特定疾病的蛋白质特征一起使用时,使受感染的细胞可见。 CAR-T将支持宿主免疫系统完全清除HIV感染的细胞。 目前CAR-T细胞生产存在几个技术限制,限速步骤是转移 将遗传物质注入初级 T 细胞,对其进行编程以消除表达目标电流的细胞。 创建 CAR-T 细胞的方法证明效率低下,无法从实验室转化为临床 脂转染无法有效转染原代 T 细胞,而电穿孔和生物制剂都会损伤细胞。 逆转录病毒的遗传物质仅限于 8-10 kb,这限制了高级应用,并且在以下情况下对细胞有毒: 使用剂量过高,并且构建起来很复杂,逆转录病毒会整合到其靶细胞中。 基因组可以使肿瘤抑制基因失活并产生肿瘤。 AGTC 开发了一种利用一系列紧密结合的技术将生物分子引入哺乳动物细胞的新方法 堆积、排列的碳纳米管可实现高效转移、低细胞毒性和高容量 该技术有潜力克服当前基因转移技术的大小限制。 除了更简单、更快和更灵活之外,AGTC 将 (1) 优化基因转移。 使用碳纳米管技术 (CNT) 制造原代人类 T 细胞;以及 (2) 创建人类抗 HIV CD8+ CAR-T 细胞对抗HIV包膜糖蛋白gp120的成功完成将增强拟议的工作。 了解 CNT 功能,并允许 AGTC 继续进一步测试 CAR-T 细胞产品 关注艾滋病毒阳性患者的治疗用途。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Omar Bakht其他文献

Omar Bakht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
  • 批准号:
    22304068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型Argonaute‒Csm6‒DNAzyme生物传感机制用于食源性致病菌超灵敏与现场化检测的研究
  • 批准号:
    32372415
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于上转换发光和SERS协同增强机制的双模式生物成像检测技术基础研究
  • 批准号:
    62375146
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于氰基“静默区”标签的食品中生物胺多组分SERS同步传感检测方法及机理研究
  • 批准号:
    32372431
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
  • 批准号:
    42377456
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Hydrogel microparticle technology for high-throughout screening of chimeric antigen receptor-T cells based on single cell effector function
基于单细胞效应功能的嵌合抗原受体T细胞高通量筛选水凝胶微粒技术
  • 批准号:
    10604170
  • 财政年份:
    2023
  • 资助金额:
    $ 27.38万
  • 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 27.38万
  • 项目类别:
An integrated polymeric carrier for subunit cancer vaccines
用于亚单位癌症疫苗的集成聚合物载体
  • 批准号:
    10576958
  • 财政年份:
    2021
  • 资助金额:
    $ 27.38万
  • 项目类别:
p53, Aging, and Cancer
p53,衰老与癌症
  • 批准号:
    10926230
  • 财政年份:
  • 资助金额:
    $ 27.38万
  • 项目类别:
p53, Aging, and Cancer
p53,衰老与癌症
  • 批准号:
    10926230
  • 财政年份:
  • 资助金额:
    $ 27.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了