Next-generation nanomedicine for acute ischemic stroke
治疗急性缺血性中风的下一代纳米药物
基本信息
- 批准号:10603229
- 负责人:
- 金额:$ 30.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AbraxaneAcuteAdrenal Cortex HormonesAmericanAnaphylaxisAnimalsAnti-Inflammatory AgentsAntibodiesArteriesAvidityBindingBinding ProteinsBloodBlood - brain barrier anatomyBlood PressureBlood capillariesBlood coagulationBlood flowBrainBrain DiseasesBrain InjuriesBrain regionBusinessesCOVID-19 vaccineCapitalCaringClinicalClinical ResearchCoagulation ProcessCombined Modality TherapyComplementComplement ActivationComplement InactivatorsDangerousnessDataDexamethasoneDiseaseDropsDrug CarriersDrug Delivery SystemsElderlyEndothelial CellsEndotheliumEnsureEnzymesEpitopesFDA approvedFab ImmunoglobulinsFibrinogenFundingGenetic Complementation TestHomeHumanImageImmunoglobulin FragmentsInfarctionInflammatoryInjuryIschemic StrokeLeukocytesLiposomesMacrophageMeasuresMechanicsMembrane ProteinsMessenger RNAMicrobeMiddle Cerebral Artery OcclusionMonoclonal AntibodiesMusNeuroprotective AgentsPatientsPennsylvaniaPerfusionPhagocytesPhagocytosisPharmaceutical PreparationsPhasePhysiciansPlasmaPlasma ProteinsPreclinical Drug DevelopmentProductionProteinsReactionRecombinant ProteinsReperfusion InjuryReperfusion TherapyReportingRiskSafetySecondary toSerumStandard ModelStrokeSystemTechnologyTestingTherapeuticThrombectomyThrombomodulinTimeTreatment EfficacyUniversitiesVascular Cell Adhesion Molecule-1anakinrabehavioral outcomebrain endothelial cellcerebral capillarycomorbiditycomplement systemcostcytokinedesigndrug candidatedrug distributiondrug efficacyefficacy testingexperienceimmune activationimprovedimproved outcomeinnovationinventionlead candidatelipid nanoparticlemanufacturemonocytemortalitymouse modelnanocarriernanomedicinenanoparticlenanoscaleneuroinflammationnew technologynext generationparticleperipheral bloodpost strokepreventprotein activationrestorationscale upscreeningside effectstroke modelstroke patientstroke trialstechnology platformtranscytosisuptake
项目摘要
ABSTRACT / PROJECT SUMMARY
Acute ischemic stroke is poised for a revolution. With the advent of mechanical thrombectomy in the
last decade, the worst clots can be removed. While thrombectomy has improved outcomes, most treated
patients still have severe deficits, in large part due to secondary injury caused by ischemia-reperfusion injury.
To solve this problem, many neuroprotective drugs were trialed, but all failed, largely due to poor drug delivery
to at-risk brain. Therefore, a new technology is needed to deliver neuroprotective drugs to re- and
under-perfused brain. To meet this challenge, University of Pennsylvania spin-out NanoMuse will build on our
two recent breakthroughs: First, we discovered that nano-scale drug carriers (nanocarriers) that bind to the
endothelial marker VCAM can concentrate drugs in the brain >30x higher than if delivered without a
nanocarrier, and >6x better than the best prior nanocarrier. In the gold-standard stroke model of transient
middle cerebral artery occlusion (tMCAO) in mice, VCAM-nanocarriers loaded with the corticosteroid
dexamethasone improved mortality and reduced infarct volume 32% (more than the 25% average of drugs that
progressed to clinical studies). Second, we found that prior nanocarriers suffered from activation of the
complement protein cascade, which limits nanocarrier uptake in the brain and produces an anaphylaxis-like
reaction that drops the blood pressure (very dangerous in stroke). Therefore, we conjugated a human
complement-inhibitor (Factor I) to the nanocarriers, and completely eliminated these problems. Now we will
combine and extend these two innovations to develop our product, a nanocarrier that massively concentrates
neuroprotective drugs in at-risk brain, initially in ischemic stroke patients after reperfusion. In Aim 1, we will
optimize the nanocarriers (e.g., switching the VCAM-targeting moiety to an Fab antibody fragment) to minimize
complement activation and phagocytosis of the particles, using mouse and human serum and leukocytes. In
Aim 2, we will use the optimized nanocarriers to test 3 drugs for efficacy in the tMCAO mouse model:
dexamethasone (already proven effective with our un-optimized nanocarrier), or mRNAs encoding two
anti-inflammatory proteins (which we already showed were effective in other mouse models). We will measure
infarct volume, behavioral outcomes, side effects, drug distribution, and mRNA-encoded protein production
compared to untargeted or drug-free nanocarriers. The best mono-therapy and a combination therapy will be
validated in tMCAO with advanced age. Our deliverable will be a nanocarrier to concentrates one or two
anti-inflammatory drugs at the BBB in order to ameliorate infarct volume by > 25%. Our team is poised to do
this, with clinicians who take care of stroke, nanotechnologists, business advisors with years of experience in
neuro-critical care products, and a supportive university. Together, we will help usher in stroke’s next
revolution.
摘要/项目摘要
随着机械血栓切除术的出现,急性缺血性中风即将发生一场革命。
过去十年,虽然血栓切除术改善了结果,但大多数治疗都可以去除最严重的血栓。
患者仍然存在严重的缺陷,很大程度上是由于缺血再灌注损伤引起的继发性损伤。
为了解决这个问题,尝试了许多神经保护药物,但都失败了,很大程度上是由于药物输送不良
因此,需要一种新技术来向受损大脑提供神经保护药物。
为了应对这一挑战,宾夕法尼亚大学的衍生产品 NanoMuse 将在我们的基础上发展。
最近的两个突破:首先,我们发现纳米级药物载体(nanocarrier)可以与药物结合
内皮标记物 VCAM 可以将药物在大脑中的浓度比不使用药物时高出 30 倍以上
在瞬态金标准中风模型中,比现有最佳纳米载体好 6 倍以上。
小鼠大脑中动脉闭塞(tMCAO),VCAM-纳米载体负载皮质类固醇
地塞米松可降低死亡率并减少梗塞体积 32%(高于其他药物 25% 的平均水平)
其次,我们发现先前的纳米载体受到激活的影响
补体蛋白级联,限制纳米载体在大脑中的摄取并产生类似过敏反应
降低血压的反应(对于中风非常危险)因此,我们将人类结合起来。
现在我们将补体抑制剂(因子I)添加到纳米载体上,并彻底消除这些问题。
结合并扩展这两项创新来开发我们的产品,一种大规模浓缩的纳米载体
在目标 1 中,我们将首先在再灌注后的缺血性中风患者中使用神经保护药物。
优化纳米载体(例如,将 VCAM 靶向部分切换为 Fab 抗体片段)以最大限度地减少
在补体激活和颗粒吞噬作用中,使用小鼠和人血清和白细胞。
目标 2,我们将使用优化的纳米载体在 tMCAO 小鼠模型中测试 3 种药物的疗效:
地塞米松(已被证明对我们未优化的纳米载体有效),或编码两种的 mRNA
抗炎蛋白(我们已经证明在其他小鼠模型中是有效的)我们将进行测量。
梗塞体积、行为结果、副作用、药物分布和 mRNA 编码的蛋白质产生
与非靶向或无药物纳米载体相比,最好的单一疗法和联合疗法将是。
我们的交付成果将是一种浓缩一种或两种物质的纳米载体。
在 BBB 处使用抗炎药物,以将梗塞体积减少 25% 以上。
这其中包括治疗中风的新人、纳米技术专家、具有多年治疗经验的商业顾问
神经重症护理产品和一所支持性大学,我们将共同帮助迎来下一个中风。
革命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Brenner其他文献
Jacob Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Brenner', 18)}}的其他基金
miRNA-Nanotechnology as a novel regenerative therapy for lymphangioleiomyomatosis
miRNA-纳米技术作为淋巴管平滑肌瘤病的新型再生疗法
- 批准号:
10761353 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
The DOVE Device to Prevent Opioid Overdose Deaths: An Armband That Senses Overdose and Automatically Injects Naloxone
防止阿片类药物过量死亡的 DOVE 装置:可感应过量并自动注射纳洛酮的臂带
- 批准号:
10485568 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
- 批准号:
10557895 - 财政年份:2022
- 资助金额:
$ 30.05万 - 项目类别:
Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
- 批准号:
10340537 - 财政年份:2022
- 资助金额:
$ 30.05万 - 项目类别:
RBC-mediated mopping of cytokines for the treatment of pneumonia
红细胞介导的细胞因子清除治疗肺炎
- 批准号:
10495259 - 财政年份:2021
- 资助金额:
$ 30.05万 - 项目类别:
RBC-mediated mopping of cytokines for the treatment of pneumonia
红细胞介导的细胞因子清除治疗肺炎
- 批准号:
10353073 - 财政年份:2021
- 资助金额:
$ 30.05万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10030992 - 财政年份:2020
- 资助金额:
$ 30.05万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10192827 - 财政年份:2020
- 资助金额:
$ 30.05万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10192827 - 财政年份:2020
- 资助金额:
$ 30.05万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Corticosteroids for Acute Exacerbations of Idiopathic Pulmonary Fibrosis: Patterns and Outcomes
皮质类固醇治疗特发性肺纤维化急性加重:模式和结果
- 批准号:
10679224 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
- 批准号:
10569397 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Mechanisms of immunological memory-mediated pathogenesis in chronic autoimmune uveitis
慢性自身免疫性葡萄膜炎免疫记忆介导的发病机制
- 批准号:
10657851 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Defining a gene expression signature of airway disease, COPD exacerbations, and response to treatment
定义气道疾病、COPD 恶化和治疗反应的基因表达特征
- 批准号:
10733573 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别: