Computing hepatic intercellular communications in response to toxicant exposures
计算肝脏细胞间通讯以响应有毒物质暴露
基本信息
- 批准号:9115599
- 负责人:
- 金额:$ 2.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2016-12-24
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnimal ModelAutomobile DrivingBehaviorBenchmarkingBile fluidBiological AssayBiomedical EngineeringCell physiologyChemicalsCholesterol HomeostasisCoagulation ProcessCommunicationComputing MethodologiesCouplingDataDatabasesEndothelial CellsEnvironmentEnvironmental ExposureExposure toFutureGenesGenomicsGoalsGraphHealthHeart DiseasesHepaticHepatocyteHumanIn VitroInterventionKupffer CellsLigandsLightLiteratureLiverLung diseasesMalignant NeoplasmsMethodologyMethodsModelingNetwork-basedOrganParkinson DiseasePathway AnalysisPathway interactionsPatternPhenotypePhysiologicalPrimary carcinoma of the liver cellsProcessProductionProteinsProteomicsPublishingRattusResearchResearch ProposalsRoleSignal PathwaySignal TransductionStimulusStreamSystemTechniquesTestingTissuesToxic Environmental SubstancesToxicant exposureTweensbasecareercell typedata integrationenvironmental chemicalexperiencegenetic regulatory proteinhuman diseaseimprovedin vivoinsightintercellular communicationliver functionliver-specific proteinnervous system disordernovelpopulation basedreceptorreceptor bindingresearch studyresponseskillstoxicanttranscriptomics
项目摘要
DESCRIPTION (provided by applicant): On a daily basis, the population is exposed to environmental chemicals. This exposure has been associated with many human diseases ranging from heart disease to Parkinson's disease, and even several cancers. The liver is an essential organ to study for understanding how environmental toxicants affect the body due to its capability of detoxifying these foreign chemicals, among other key responsibilities. The liver contains multiple cell types, each having distinct functionality, and investigating how these cell types communicate is imperative to understanding physiological functions of the liver. However, in vivo studies of inter-cellular communications in the liver are difficult for both humans and model organisms. Emerging as an attractive alternative, in vitro bioengineered liver models have been developed that represent the most important cell types (hepatocytes, liver sinusoidal endothelial cells (LSECs), and Kupffer cells) and maintain cell-type-specific phenotypes and behaviors as a surrogate for costly experiments. Using these liver models, in combination with genomic and computational methods, promises to improve our understanding of the cellular signaling that occurs within the liver models under both normal conditions and after an exposure to environmental toxicants, thereby resulting in more impactful and biologically meaningful insights. Developing novel computational methods seek to quantitatively identify the normal inter-cellular communication patterns between the liver cell types and utilize transcriptomic and proteomic data for predicting how environmental chemicals perturb the normal hepatic inter-cellular communication patterns. This research proposal will develop novel network based computational methods related to inter-cellular signaling and communication in the liver. Computational methods will be tested, benchmarked and validated using experimental data from both toxicant response assays and bioengineered liver models. These approaches will make predictions and prioritizations that are biologically informative and relevant, thus driving future experiments. To this end, a database of rat-related liver-specific protein-protein and regulatory interactions and signaling pathways derived from published literature as a starting framework for computing liver-specific signaling networks will be created. This network will be used to predict dysregulated signaling patterns from high-throughput response assays. The liver-specific background network will be extended to include inter-cellular interactions and integrate transcriptomic and proteomic data from 3D bioengineered liver models. This data integration will result in the identification of inter-cellular communication patterns specific for
bioengineered liver systems. Additionally, toxicant-specific signaling network as a result of the liver models' exposure to various environmental chemicals will be computed. From these toxicant-specific networks, differential network analysis will be performed to identify chemical specific signaling patterns, which subsequently will prioritize future experiments. Taken together, this proposal will characterize and propose mechanisms in which toxicants alter the natural inter-cellular communication patterns.
描述(由申请人提供):人们每天都会接触环境化学品。这种接触与许多人类疾病有关,从心脏病到帕金森病,甚至几种癌症。肝脏是研究环境毒物如何影响身体的重要器官,因为它具有解毒这些外来化学物质的能力,以及其他关键职责。肝脏包含多种细胞类型,每种细胞类型都有不同的功能,研究这些细胞类型如何沟通对于了解肝脏的生理功能至关重要。然而,肝脏细胞间通讯的体内研究对于人类和模型生物来说都是困难的。作为一种有吸引力的替代方案,体外生物工程肝脏模型已经开发出来,它代表最重要的细胞类型(肝细胞、肝窦内皮细胞(LSEC)和库普弗细胞),并维持细胞类型特异性表型和行为,作为昂贵的实验。使用这些肝脏模型,结合基因组和计算方法,有望提高我们对正常条件下和暴露于环境毒物后肝脏模型内发生的细胞信号传导的理解,从而产生更具影响力和生物学意义的见解。开发新颖的计算方法旨在定量识别肝细胞类型之间的正常细胞间通讯模式,并利用转录组和蛋白质组数据来预测环境化学物质如何扰乱正常的肝细胞间通讯模式。该研究计划将开发与肝脏细胞间信号传导和通信相关的新型网络计算方法。将使用毒物反应测定和生物工程肝脏模型的实验数据对计算方法进行测试、基准测试和验证。这些方法将做出具有生物学信息和相关性的预测和优先级,从而推动未来的实验。为此,将创建一个源自已发表文献的大鼠相关肝脏特异性蛋白质-蛋白质和调节相互作用以及信号通路的数据库,作为计算肝脏特异性信号网络的起始框架。该网络将用于通过高通量响应分析预测失调的信号传导模式。肝脏特异性背景网络将扩展到包括细胞间相互作用,并整合来自 3D 生物工程肝脏模型的转录组和蛋白质组数据。这种数据集成将导致特定于细胞间通信模式的识别
生物工程肝脏系统。此外,还将计算由于肝脏模型暴露于各种环境化学物质而导致的毒物特异性信号网络。从这些毒物特异性网络中,将进行差异网络分析,以确定化学特异性信号传导模式,随后将优先考虑未来的实验。总而言之,该提案将描述并提出毒物改变自然细胞间通讯模式的机制。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models.
- DOI:10.1038/s41598-018-29455-x
- 发表时间:2018-07-27
- 期刊:
- 影响因子:4.6
- 作者:Tegge AN;Rodrigues RR;Larkin AL;Vu L;Murali TM;Rajagopalan P
- 通讯作者:Rajagopalan P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison N Tegge其他文献
Allison N Tegge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison N Tegge', 18)}}的其他基金
Recovery from Opioid Use Disorder: subgroups, transition states, and their association with recovery outcomes
阿片类药物使用障碍的恢复:亚组、过渡状态及其与恢复结果的关联
- 批准号:
10585674 - 财政年份:2022
- 资助金额:
$ 2.1万 - 项目类别:
Computing hepatic intercellular communications in response to toxicant exposures
计算肝脏细胞间通讯以响应有毒物质暴露
- 批准号:
8911699 - 财政年份:2014
- 资助金额:
$ 2.1万 - 项目类别:
Computing hepatic intercellular communications in response to toxicant exposures
计算肝脏细胞间通讯以响应有毒物质暴露
- 批准号:
8718528 - 财政年份:2014
- 资助金额:
$ 2.1万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 2.1万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 2.1万 - 项目类别:
High-throughput Flow Culture of 3D Human PKD Models for Therapeutic Screening
用于治疗筛选的 3D 人体 PKD 模型的高通量流式培养
- 批准号:
10649222 - 财政年份:2023
- 资助金额:
$ 2.1万 - 项目类别:
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
- 批准号:
10760193 - 财政年份:2023
- 资助金额:
$ 2.1万 - 项目类别: