Scramblases for protein glycosylation
用于蛋白质糖基化的 Scramblases
基本信息
- 批准号:10600063
- 负责人:
- 金额:$ 51.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAlkynesAntibodiesAzidesBenzophenonesBiochemicalBioinformaticsBiologicalBiological AssayCarrier ProteinsCell-Adhesion Molecule ReceptorsCellsCellular biologyCharacteristicsComplexCongenital disorders of glycosylationCytoplasmCytoskeletonDataDefectDengueDiseaseDistantDolicholDolichol Monophosphate MannoseDystroglycanEmbryoEndoplasmic ReticulumEukaryotaExtracellular MatrixFaceFutureG-Protein-Coupled ReceptorsGPI Membrane AnchorsGenetic Complementation TestGenomeGlucoseGlycolipidsGlycoproteinsGlycosylphosphatidylinositolsGoalsHematopoieticHereditary DiseaseIon ChannelIsomerismLearningLinkLipidsMalariaMammalsMannoseMediatingMembraneMembrane ProteinsMethodsMicrosomesMolecularMusMuscular DystrophiesNeurologic SymptomsOrganismPhenotypePhylogenetic AnalysisPhysiologicalPlant ResinsPolysaccharidesPositioning AttributePost-Translational Protein ProcessingProceduresProcessProliferatingProtein GlycosylationProteinsProteomicsReactionReporterSideSourceSpecificityStructureTestingTrypanosomaUniversitiesVesicleVirusVirus DiseasesWorkYeastsadductanalogbiophysical techniquescandidate identificationchemoproteomicscrosslinkexperienceexperimental studygenomic locusglycosylationhuman diseasehuman stem cellsin silicoin vivoinnovationinterestmutantnovelparoxysmal nocturnal hemoglobinuriaphospholipid scramblaseprotein functionreconstitutionsecretory proteinsugar
项目摘要
Protein glycosylation is essential in all eukaryotes, from disease-causing protists such as malaria, to yeast and
mammals. Secretory proteins are N-glycosylated, O- and C-mannosylated, and/or glycosylphosphatidylinositol
(GPI)-anchored as they enter the lumen of the endoplasmic reticulum (ER). Yeast that cannot synthesize N-
glycoproteins or GPI-proteins are inviable, and mice with the same defects die as embryos. Glycosylation is
important in dengue and SARS-CoV-2 viral infections, and defects in glycosylation cause human disease. Thus,
deficient O-mannosylation of dystroglycan is a cause of muscular dystrophy and GPI deficiency in
hematopoietic human stem cells underlies the hemolytic disease paroxysmal nocturnal hemoglobinuria.
Congenital Disorders of Glycosylation (CDGs) are severe inherited diseases with neurological symptoms.
Protein glycosylation reactions require the glycolipids mannosyl- and glucosyl-phosphoryl dolichol (MPD,
GPD) to act as sugar donors in the lumen of the ER. As these lipids are synthesized on the cytoplasmic side,
they must be flipped across the ER membrane to function in the lumen, a process requiring specific
transporters, termed scramblases, that have yet to be identified. Assays of the two scramblases in microsomes
and reconstituted vesicles, using natural lipids and short-chain analogs as reporters, reveal that transport is
bidirectional, ATP-independent, and highly structure specific, discriminating between structural isomers.
We will identify the MPD and GPD scramblases using chemo-proteomic and bioinformatic approaches.
Deploying novel photo-clickable probes synthesized by the Häner group (University of Bern) we will determine
the MPD and GPD interactomes, that we hypothesize will include the scramblases. Our preliminary results
validate this approach: the MPD probe functions in ER mannosylation and photo-identifies specific yeast
microsomal proteins. Photo-adducted proteins will be identified by quantitative proteomics and tested for
scramblase activity in our reconstitution-based assays. Promising candidates will be validated in vivo by
evaluating phenotypes of yeast mutants. For GPD scramblase we will also identify candidates via phylogenetic
profiling, a bioinformatics method for assignment of protein function. This approach complements the photo-
identification strategy and has already yielded a list of GPD scramblase candidates for testing.
This is a consequential proposal to discover critical players in ER protein glycosylation. Our extensive
experience in studying scramblases puts us in a strong position to tackle this objective. We discovered the
scramblase activity of Class A GPCRs and were the first to show lipid scrambling by a TMEM16 ion channel.
We now deploy in silico, biochemical and biophysical methods to elucidate their mechanism. We will use this
expertise in future work to reveal the molecular mechanism of structure-specific lipid scrambling mediated by
the MPD and GPD scramblases that we predict to be distinct from that of the currently known phospholipid
scramblases. At a biological level, our discoveries will reveal new genetic loci associated with CDGs.
蛋白质糖基化在所有真核生物中都是必不可少的,从引起疾病的原生生物(例如疟疾)到酵母和
哺乳动物的分泌蛋白是N-糖基化、O-和C-甘露糖基化和/或糖基磷脂酰肌醇。
(GPI)-锚定在它们进入不能合成 N-的内质网 (ER) 的腔内。
糖蛋白或 GPI 蛋白是无法存活的,具有相同缺陷的小鼠会像胚胎一样死亡。
在登革热和 SARS-CoV-2 病毒感染中很重要,糖基化缺陷会导致人类疾病。
肌营养不良症 (dystroglycan) 的 O-甘露糖基化缺陷是肌营养不良和 GPI 缺乏的原因
人类造血干细胞是溶血性疾病阵发性睡眠性血红蛋白尿的基础。
先天性糖基化障碍(CDG)是一种伴有神经系统症状的严重遗传性疾病。
蛋白质糖基化反应需要糖脂甘露糖基和葡萄糖基磷酰多乙醇 (MPD,
GPD)作为内质网腔内的糖供体,因为这些脂质是在细胞质侧合成的,
它们必须翻转穿过内质网膜才能在管腔中发挥作用,这一过程需要特定的
转运蛋白,称为扰乱酶,尚未在微粒体中鉴定出两种扰乱酶。
使用天然脂质和短链类似物作为生产者的重构囊泡表明,运输是
双向、不依赖 ATP、高度结构特异性、可区分结构异构体。
我们将使用化学蛋白质组学和生物信息学方法来鉴定 MPD 和 GPD 扰乱酶。
部署由 Häner 小组(伯尔尼大学)合成的新型可照片点击探针,我们将确定
我们参与的 MPD 和 GPD 相互作用组将包括我们的初步结果。
验证该方法:MPD 探针在 ER 甘露糖基化中发挥作用,并通过照片识别特定酵母
微粒体蛋白将通过定量蛋白质组学进行鉴定并进行测试。
我们基于重构的测定中的扰乱酶活性将通过体内验证。
对于 GPD 扰乱酶,我们还将通过系统发育鉴定候选者。
分析,一种用于分配蛋白质功能的生物信息学方法,该方法补充了照片分析方法。
识别策略,并已经产生了用于测试的 GPD 扰乱候选者列表。
这是发现 ER 蛋白糖基化中关键参与者的一项重要建议。
研究扰乱的经验使我们有能力实现这一目标。我们发现了这一点。
A 类 GPCR 的扰乱酶活性,并且是第一个通过 TMEM16 离子通道显示脂质扰乱的研究。
我们现在采用计算机、生物化学和生物物理方法来阐明它们的机制。
未来工作中的专业知识揭示了结构特异性脂质扰乱的分子机制
我们预测 MPD 和 GPD 扰乱酶与目前已知的磷脂的扰乱酶不同
在生物学水平上,我们的发现将揭示与 CDG 相关的新基因位点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANANT K MENON其他文献
ANANT K MENON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANANT K MENON', 18)}}的其他基金
Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
- 批准号:
10510784 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
- 批准号:
10700974 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
- 批准号:
8196655 - 财政年份:2011
- 资助金额:
$ 51.2万 - 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
- 批准号:
8267601 - 财政年份:2011
- 资助金额:
$ 51.2万 - 项目类别:
Biosynthesis of Membrane Protein Glycolipid Anchors
膜蛋白糖脂锚的生物合成
- 批准号:
7938503 - 财政年份:2009
- 资助金额:
$ 51.2万 - 项目类别:
相似国自然基金
氢甲酰化-有机催化接力策略介导的炔烃不对称多官能化及环化反应研究
- 批准号:22371217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
炔烃叁键的选择性“断键/插碳”反应研究
- 批准号:22361010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
炔烃参与的新型不对称去芳构化反应研究
- 批准号:22371254
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于炔烃环化反应新型硼氮杂Z型并苯类多环芳烃的设计、合成及性质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Developing a robust method for analyzing transcription factor mediated chromatin interactions
开发一种稳健的方法来分析转录因子介导的染色质相互作用
- 批准号:
10667811 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Effects of Poly(ethylene glycol) Immunogenicity on Implant Biocompatibility
聚乙二醇免疫原性对植入物生物相容性的影响
- 批准号:
10697334 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Effects of Poly(ethylene glycol) Immunogenicity on Implant Biocompatibility
聚乙二醇免疫原性对植入物生物相容性的影响
- 批准号:
10697334 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别: