Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
基本信息
- 批准号:10600023
- 负责人:
- 金额:$ 63.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAnoxic EncephalopathyBenchmarkingBrainBrain InjuriesCaringCause of DeathClinicalClinical DataCollectionComaComplexCritical CareDataDatabasesDecision Support SystemsDetectionElectroencephalographyEnsureEventEvolutionFailureFamilyFutureHeart ArrestHospitalizationHourHumanImageInformation SciencesInjuryKnowledgeLabelLaboratoriesLearningMachine LearningMethodsModalityModelingModern MedicineMonitorNeurologicNeurologic ExaminationOutcomeOutputPatient CarePatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPhysiologicalPhysiologyProcessPrognosisProviderRecommendationRecoveryResolutionResourcesSamplingSeriesSpecificitySpeedStatistical ModelsStructureSupervisionSurvival AnalysisSurvivorsSystemTemperatureTest ResultTestingTimeTrainingUncertaintyUnited StatesValidationWithdrawalWorkanalytical toolcostdata ecosystemdeep learningdemographicsdisabilityevidence based guidelinesfeature selectionimprovedinclusion criteriainnovationinsightlife-sustaining therapymodel buildingneuralneurological recoverynovelnovel strategiesoutcome predictionpatient populationpredictive toolsprognosticprognosticationprospectiveprospective testrandom forestrisk minimizationtool
项目摘要
Abstract
Predicting recovery from anoxic brain injury and coma after cardiac arrest is challenging. Although patients
resuscitated from cardiac arrest are intensively monitored in critical care units, clinicians use only a tiny subset
of available data to predict potential for recovery, making neurological prognostication both slow and imprecise.
This is a specific example of a ubiquitous problem in modern medicine: routine clinical monitoring generates
vast quantities of rich information, but tools to transform these data to useful knowledge are lacking.
This project will leverage expertise in post-arrest critical care, information science, statistical modeling and
machine learning to make a system that rapidly delivers actionable prognostic knowledge. We have cleaned,
organized and aggregated a large, highly multivariate time series database with physiological and clinical
information with over 170,000 hours of quantitative electroencephalographic (EEG) features for >1,850 post-
arrest patients. We will refine and optimize analytical tools that predict recovery in this patient population more
rapidly and accurately than clinical experts. We will use innovative approaches to minimize risk of bias during
training of models introduced by outcome labels created by fallible human providers.
In Aim 1 of this proposal, we will use novel approaches to create informative and interpretable features from
heterogeneous clinical data including EEG waveforms, vital signs, medications and laboratory test results. We
will use deep learning to identify interpretable and parsimonious sets of these features that predict outcome.
We will train, test and compare the performance of multiple analytical tools. In Aim 2, we will prospectively
compare the best performing model(s) against a panel of expert clinicians. Models that confidently identify
patients with near-zero prospect of recovery with greater sensitivity or faster than expert clinicians can serve as
decision support systems. Improving the speed and accuracy of post-arrest prognostication will save lives,
allow appropriate resources to be directed to patients who are likely to benefit, avoid long and difficult care for
patients who cannot recover, and spare families the agony of uncertainty.
抽象的
预测心脏骤停后缺氧性脑损伤和昏迷的恢复具有挑战性。虽然患者
从心脏骤停中复苏的患者在重症监护室受到严密监测,临床医生仅使用一小部分
现有数据来预测恢复潜力,使得神经学预测既缓慢又不精确。
这是现代医学中普遍存在的问题的一个具体例子:常规临床监测会产生
大量丰富的信息,但缺乏将这些数据转化为有用知识的工具。
该项目将利用逮捕后重症监护、信息科学、统计建模和
机器学习来构建一个快速提供可操作的预测知识的系统。我们已经打扫干净,
组织和聚合了一个大型、高度多元的生理和临床时间序列数据库
超过 1,850 名术后患者的超过 170,000 小时的定量脑电图 (EEG) 特征信息
逮捕病人。我们将完善和优化分析工具,以更多地预测该患者群体的康复情况
比临床专家更快、更准确。我们将使用创新方法来最大限度地减少偏见风险
对由容易犯错的人类提供者创建的结果标签引入的模型进行训练。
在本提案的目标 1 中,我们将使用新颖的方法来创建信息丰富且可解释的特征
异质临床数据,包括脑电图波形、生命体征、药物和实验室测试结果。我们
将使用深度学习来识别可预测结果的可解释且简约的特征集。
我们将训练、测试和比较多种分析工具的性能。在目标 2 中,我们将前瞻性地
将表现最佳的模型与专家临床医生小组进行比较。自信地识别的模型
康复前景接近于零的患者比专家临床医生更敏感或更快速,可以作为
决策支持系统。提高逮捕后预测的速度和准确性将挽救生命,
允许将适当的资源分配给可能受益的患者,避免长期和困难的护理
无法康复的患者,让家人免受不确定性的痛苦。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Elmer其他文献
Jonathan Elmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Elmer', 18)}}的其他基金
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10842647 - 财政年份:2023
- 资助金额:
$ 63.06万 - 项目类别:
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10337430 - 财政年份:2022
- 资助金额:
$ 63.06万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10314042 - 财政年份:2020
- 资助金额:
$ 63.06万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10412861 - 财政年份:2020
- 资助金额:
$ 63.06万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10526409 - 财政年份:2020
- 资助金额:
$ 63.06万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
9916825 - 财政年份:2017
- 资助金额:
$ 63.06万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
10197229 - 财政年份:2017
- 资助金额:
$ 63.06万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10337430 - 财政年份:2022
- 资助金额:
$ 63.06万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8536960 - 财政年份:2007
- 资助金额:
$ 63.06万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
9064879 - 财政年份:2007
- 资助金额:
$ 63.06万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8401645 - 财政年份:2007
- 资助金额:
$ 63.06万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8701419 - 财政年份:2007
- 资助金额:
$ 63.06万 - 项目类别: