An ethical framework-guided metric tool for assessing bias in EHR-based Big Data studies
一种道德框架指导的度量工具,用于评估基于电子病历的大数据研究中的偏差
基本信息
- 批准号:10599459
- 负责人:
- 金额:$ 26.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-09 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdministratorAreaArtificial IntelligenceAssessment toolAutomationAwarenessBehavioral ResearchBehavioral SciencesBig DataBiomedical ResearchCommunitiesConsentCountryDataData CollectionData ReportingData SetDevelopmentDiagnosisDiscriminationDisease ProgressionEducational workshopElectronic Health RecordEthical IssuesEthicsEthnic OriginFAIR principlesFeedbackFundingFutureGoalsGuidelinesHIVHealthHealth PersonnelHealthcareInterviewInvestmentsKnowledgeLeadLiteratureMachine LearningMeasurementMedicineMiningOwnershipParentsPatientsPoliciesPopulationPopulation GroupProcessPublic HealthRaceRecordsReportingResearchResearch InfrastructureResearch Project GrantsResearch TrainingResourcesRiskSocioeconomic StatusSouth CarolinaStandardizationSystemTechnologyUnderrepresented PopulationsUnited States National Institutes of HealthViralWorkalgorithm trainingbaseclinical decision-makingdata acquisitiondata curationdata managementdata repositoryhealth datahealth disparityimprovedinsightinterdisciplinary collaborationmachine learning algorithmmachine learning predictionmultiple data sourcesnovelparent grantparent projectpersonalized medicinepilot testprivacy protectionresponsesocial health determinantssoundtool
项目摘要
Abstract
The emergence of Big Data health research has exponentially advanced the fields of medicine and public health
but has also faced many ethical challenges. One of most worrying but still under-researched aspects of ethical
issues is the risk of potential biases in datasets (e.g., electronic health records [EHR] data) as well as in the data
curation and acquisition cycles. Very few EHR data-based studies report bias in datasets, data acquisition
and/or mining as an indicator of research quality because of a lack of a standardized measurement tool or
metrics to assess bias; few ethical frameworks as a theoretical ground; and limited effective interdisciplinary
collaboration that engages ethical experts, professional data curators, data management experts, data
repository administrators, healthcare workers, and state agencies in discussions addressing this ethical
challenge. Since 2021, we have been funded by NIH (R01AI164947) to develop a machine-learning based
predictive model of viral suppression among HIV patients based on EHR and other relevant data from multiple
sources in South Carolina. One of the ethical challenges encountered by the parent project is how to assess the
potential biases in the curation, acquisition, and processing of EHR data. In response to the NOT-OD-22-065
titled “Administrative supplements for advancing the ethical development and use of AI/ML in biomedical and
behavioral sciences”, we propose to develop, refine, and pilot test an ethical framework-guided metric tool for
assessing bias in Big Data research using EHR datasets. Specifically, we request support to: 1) conduct a
literature/policy review and concept analysis to develop an ethical framework for unbiased and inclusive Big
Data research; 2) create and modify a metric tool to assess potential biases in EHR data-based studies via in-
depth interviews of key stakeholders of the parent project; and 3) refine and disseminate the metric tool
through a community charette workshop among interdisciplinary scholars (ethics experts and disciplinary
experts) and key stakeholders (data curators, data management experts, and data repository administrators;
healthcare workers; and HIV patients) and pilot test it in the parent project. The proposed study will advance
our understanding of bias and equity issues in Big Data research and develop an ethical framework and a
metric tool for assessing bias in EHR-based Big Data studies, thus leading to and informing a more nuanced
assessment and exploration of bias in practice for the ethical development of Big Data health research beyond
the parent project. The metric tool of bias for a Big Data study can be reused as an assessment tool to detect
and quantify biases, which may contribute to improving awareness and exploration of this critical ethical
challenge. The ethical framework regarding bias challenges in Big Data research may provide insights and
guidance for addressing bias issues in other types of Big Data beyond EHR.
抽象的
大数据健康研究的出现极大地推动了医学和公共卫生领域的发展
但也面临着许多道德挑战,这是道德方面最令人担忧但仍未得到充分研究的方面之一。
问题是数据集(例如电子健康记录 [EHR] 数据)以及数据中存在潜在偏差的风险
很少有基于 EHR 数据的研究报告数据集、数据采集方面的偏差。
和/或由于缺乏标准化的测量工具而将挖掘作为研究质量的指标,或者
评估偏见的指标;作为理论基础的道德框架很少;有效的跨学科性有限;
涉及道德专家、专业数据管理者、数据管理专家、数据
存储库管理员、医护人员和国家机构正在讨论解决这一道德问题
自 2021 年以来,我们得到了 NIH (R01AI164947) 的资助,开发了一种基于机器学习的方法。
基于 EHR 和来自多个国家的其他相关数据的 HIV 患者病毒抑制预测模型
母项目遇到的道德挑战之一是如何评估南卡罗来纳州的资源。
EHR 数据的管理、获取和处理中的潜在偏差 作为对 NOT-OD-22-065 的回应。
标题为“促进人工智能/机器学习在生物医学和医学领域的道德发展和使用的行政补充”
“行为科学”,我们建议开发、完善和试点测试一种道德框架指导的衡量工具
具体来说,我们请求支持:1) 进行一项使用 EHR 数据集的大数据研究偏差。
文献/政策审查和概念分析,为公正和包容性大发展制定道德框架
数据研究;2)创建和修改度量工具,通过以下方式评估基于 EHR 数据的研究中的潜在偏差:
对母项目的主要利益相关者进行深度访谈;3) 完善和传播衡量工具
通过跨学科学者(道德专家和学科专家)参加的社区专题研讨会
专家)和主要利益相关者(数据管理者、数据管理专家和数据存储库管理员;
以及艾滋病毒患者),并在母项目中进行试点测试。
我们对大数据研究中的偏见和公平问题的理解并制定了道德框架和
用于评估基于 EHR 的大数据研究中的偏差的度量工具,从而导致并提供更细致的信息
大数据健康研究伦理发展实践中的偏见评估和探索
大数据研究的偏差度量工具可以重复用作检测的评估工具。
并量化偏见,这可能有助于提高对这一关键道德的认识和探索
关于大数据研究中的偏见挑战的道德框架可能会提供见解和挑战。
解决 EHR 之外其他类型大数据中的偏见问题的指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bankole Olatosi其他文献
Bankole Olatosi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bankole Olatosi', 18)}}的其他基金
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10828961 - 财政年份:2023
- 资助金额:
$ 26.76万 - 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10425449 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10890970 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10658458 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10321732 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
- 批准号:
10622620 - 财政年份:2021
- 资助金额:
$ 26.76万 - 项目类别:
相似海外基金
COVID-19 Impacts on Health Services and Social Support for Pregnant and Postpartum People in Prison
COVID-19 对监狱中孕妇和产后人员健康服务和社会支持的影响
- 批准号:
10669448 - 财政年份:2023
- 资助金额:
$ 26.76万 - 项目类别:
Implementing sexual orientation and gender identity data collection in the electronic medical record within diverse cancer care settings
在不同癌症护理环境中的电子病历中实施性取向和性别认同数据收集
- 批准号:
10640725 - 财政年份:2022
- 资助金额:
$ 26.76万 - 项目类别:
Extending Digital Survivorship Needs Assessment Planning Tools to Enhance Communication in the Head and Neck Cancer Survivor-Caregiver-Provider Triad
扩展数字化生存者需求评估规划工具,以加强头颈癌生存者-护理者-提供者三人组中的沟通
- 批准号:
10831265 - 财政年份:2022
- 资助金额:
$ 26.76万 - 项目类别:
An Evidence-based Approach for Bullying Prevention
预防欺凌的循证方法
- 批准号:
10192438 - 财政年份:2020
- 资助金额:
$ 26.76万 - 项目类别: