Developing and Evaluating a Machine-Learning Opioid Prediction & Risk-Stratification E-Platform (DEMONSTRATE)
开发和评估机器学习阿片类药物预测
基本信息
- 批准号:10597698
- 负责人:
- 金额:$ 63.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsAmbulatory Care FacilitiesAmericanClassificationClinicClinicalClinical DataClinical ResearchComputer softwareCriminal JusticeDataData SetData SourcesDevelopmentDiagnosisDoseElectronic Health RecordEnsureFeedbackFloridaFocus GroupsFundingGuidelinesHealthHealth Care CostsHealth systemHealthcare SystemsHomelessnessIndividualInterventionInterviewLettersLinkMachine LearningMeasuresMedicaidMedicareMethodsNaloxoneNational Institute of Drug AbuseNatural Language ProcessingNurse PractitionersOpioidOutcomeOverdosePatientsPennsylvaniaPerformancePersonsPharmacy facilityPhysician AssistantsPhysiciansPolicy MakerProcessProctor frameworkProductivityProviderPublic HealthReportingResearchResourcesRiskSafetySocial BehaviorSystemTimeTranslatingTranslationsUnited States Centers for Medicare and Medicaid ServicesUniversitiesVisitVisualizationWorkacceptability and feasibilityadverse outcomeclinical decision supportclinical practicecohortcostdeep neural networkdesignelectronic health record systemhigh riskimplementation outcomesimprovedinnovationinsurance claimsmachine learning algorithmmachine learning prediction algorithmmodel developmentneural networkneural network algorithmnovel strategiesopioid overdoseopioid useopioid use disorderoverdose riskpilot testpost implementationprediction algorithmpredictive modelingpredictive toolsprescription opioidprescription opioid misusepreventprimary care clinicprimary care providerprogramsprototyperecurrent neural networkresponserisk mitigationrisk predictionrisk prediction modelrisk stratificationstructured datasuccesssupport toolstoolusabilityuser centered designuser-friendly
项目摘要
Project Summary/Abstract
An unprecedented rise in opioid overdose and opioid use disorder (OUD) has become a public health crisis in
the US. In response, health systems, payers, and policy makers have developed or adopted measures and
programs to target individuals at high-risk for overdose or OUD. However, significant gaps exist in the current
approaches to identify individuals at high-risk for overdose or OUD. First, the definition of ‘high-risk’ currently
used by payers and health systems varies widely (ranging from high opioid dose to the number of pharmacies
or prescribers a patient has visited). Second, little is known about how accurately these measures truly identify
patients with overdose or OUD, and there is some evidence showing they perform poorly, missing 70% to 90%
of individuals with an actual OUD diagnosis or overdose. Third, our NIDA-funded work (R01DA044985) using
national Medicare and Pennsylvania Medicaid claims data has shown that machine-learning algorithms can
achieve better performance for risk prediction for opioid overdose and OUD. Thus, the immediate next step is to
expand our algorithms to other data sources (e.g., electronic health records [EHR]), as well as to apply state-of-
the-art longitudinal neural networks and natural language processing (NLP) to further improve prediction
accuracy. In addition, we aim to translate these risk scores into a clinical decision tool to be used by health care
systems to automatically analyze and visualize the relevant information regarding risk prediction and stratification
for opioid overdose or OUD, using either claims data, EHR data, or both in real time.
Leveraging our NIDA-funded work on developing machine-learning algorithms to predict opioid overdose and
OUD, we propose to “develop and evaluate a machine-learning opioid prediction & risk-stratification e-
platform (DEMONSTRATE)” that can be used by health care systems to identify patients at high risk for
opioid overdose and OUD. We have 3 specific aims. Aim 1 will refine and validate prediction algorithms to
identify patients at risk for opioid overdose/OUD using 3 different datasets (i.e., 2011-2020 Florida all-payer EHR,
Florida Medicaid claims, and Florida Medicaid claims linked with EHR data) from the OneFlorida Clinical
Research Consortium. We will expand our current algorithms by applying state-of-the-art methods (e.g., NLP) to
improve prediction. In Aim 2, we will design and prototype a DEMONSTRATE clinical decision support tool to
incorporate the best prediction algorithms to provide automatic warnings to primary care providers of patients at
high risk of overdose/OUD. An iterative user-centered design approach will be used to enhance
DEMONSTRATE’s functionality and usability. In Aim 3, we will integrate DEMONSTRATE into the University of
Florida Health’s EHR system, and deploy and pilot test DEMONSTRATE in three primary care clinics. We will
assess DEMONSTRATE’s usability, acceptability, and feasibility. Our proposed research is highly innovative in
its expansion, translation, and application of a promising NIDA-funded machine-learning opioid prediction and
risk stratification tool into a software platform to better inform clinical practice for improving safety of opioid use.
项目概要/摘要
阿片类药物过量和阿片类药物使用障碍 (OUD) 的空前增加已成为公共卫生危机
作为回应,卫生系统、付款人和政策制定者已经制定或采取了措施并
然而,目前的计划还存在重大差距。
识别药物过量或 OUD 高风险人群的方法 首先,目前“高风险”的定义。
付款人和卫生系统使用的药物差异很大(从高阿片类药物剂量到药房数量)
其次,人们对这些措施的识别准确度知之甚少。
服药过量或 OUD 的患者,有一些证据表明他们表现不佳,缺失 70% 至 90%
第三,我们的 NIDA 资助的工作 (R01DA044985) 使用。
国家医疗保险和宾夕法尼亚州医疗补助索赔数据表明,机器学习算法可以
在阿片类药物过量和 OUD 的风险预测方面取得更好的性能,因此,下一步是
将我们的算法扩展到其他数据源(例如电子健康记录 [EHR]),以及应用现状
最先进的纵向神经网络和自然语言处理 (NLP) 进一步改进预测
此外,我们的目标是将这些风险评分转化为医疗保健所使用的临床决策工具。
自动分析和可视化有关风险预测和分层的相关信息的系统
对于阿片类药物过量或 OUD,使用实时索赔数据、EHR 数据或两者。
利用 NIDA 资助的机器学习算法开发工作来预测阿片类药物过量和
OUD,我们建议“开发和评估机器学习阿片类药物预测和风险分层电子-
平台(DEMONSTRATE)”,医疗保健系统可以使用该平台来识别高风险患者
阿片类药物过量和 OUD 目标 1 将完善和验证预测算法。
使用 3 个不同的数据集(即 2011-2020 年佛罗里达州全付费 EHR、
佛罗里达州医疗补助索赔以及与 EHR 数据相关的佛罗里达州医疗补助索赔)来自 OneFlorida Clinical
研究联盟。我们将通过应用最先进的方法(例如 NLP)来扩展我们当前的算法。
在目标 2 中,我们将设计并制作一个演示临床决策支持工具的原型。
结合最佳预测算法,向患者的初级保健提供者提供自动警告
过量/OUD 的高风险将采用以用户为中心的迭代设计方法来增强。
DEMONSTRATE 的功能和可用性在目标 3 中,我们将把 DEMONSTRATE 集成到大学中。
佛罗里达卫生局的 EHR 系统,并在三个初级保健诊所进行部署和试点测试。
评估 DEMONSTRATE 的可用性、可接受性和可行性。我们提出的研究在以下方面具有高度创新性。
其对 NIDA 资助的有前景的机器学习阿片类药物预测的扩展、翻译和应用
将风险分层工具集成到软件平台中,以更好地为临床实践提供信息,从而提高阿片类药物使用的安全性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of Personal and Family History of Suicidal Thoughts and Behaviors using Deep Learning and Natural Language Processing: A Multi-Site Study.
使用深度学习和自然语言处理检测个人和家族的自杀想法和行为史:一项多站点研究。
- DOI:
- 发表时间:2024-03-11
- 期刊:
- 影响因子:0
- 作者:Adekkanattu, Prakash;Furmanchuk, Al'ona;Wu, Yonghui;Pathak, Aman;Patra, Braja Gopal;Bost, Sarah;Morrow, Destinee;Wang, Grace Hsin;Yang, Yuyang;Forrest, Noah James;Luo, Yuan;Walunas, Theresa L;Jenny, Wei;Gelad, Walid;Bian
- 通讯作者:Bian
Developing and validating a machine-learning algorithm to predict opioid overdose in Medicaid beneficiaries in two US states: a prognostic modelling study.
开发和验证机器学习算法来预测美国两个州医疗补助受益人的阿片类药物过量:预后建模研究。
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Lo;Donohue, Julie M;Yang, Qingnan;Huang, James L;Chang, Ching;Weiss, Jeremy C;Guo, Jingchuan;Zhang, Hao H;Cochran, Gerald;Gordon, Adam J;Malone, Daniel C;Kwoh, Chian K;Wilson, Debbie L;Kuza, Courtney C;Gellad, Walid F
- 通讯作者:Gellad, Walid F
Deprescribing Strategies for Opioids and Benzodiazepines with Emphasis on Concurrent Use: A Scoping Review.
取消阿片类药物和苯二氮卓类药物的处方策略,强调同时使用:范围界定审查。
- DOI:
- 发表时间:2023-02-23
- 期刊:
- 影响因子:0
- 作者:Wang, Yanning;Wilson, Debbie L;Fernandes, Deanna;Adkins, Lauren E;Bantad, Ashley;Copacia, Clint;Dharma, Nilay;Huang, Pei;Joseph, Amanda;Park, Tae Woo;Budd, Jeffrey;Meenrajan, Senthil;Orlando, Frank A;Pennington, John;Schmidt, Siegfried
- 通讯作者:Schmidt, Siegfried
Changes in predicted opioid overdose risk over time in a state Medicaid program: a group-based trajectory modeling analysis.
州医疗补助计划中预测的阿片类药物过量风险随时间的变化:基于群体的轨迹建模分析。
- DOI:
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Guo, Jingchuan;Gellad, Walid F;Yang, Qingnan;Weiss, Jeremy C;Donohue, Julie M;Cochran, Gerald;Gordon, Adam J;Malone, Daniel C;Kwoh, C Kent;Kuza, Courtney C;Wilson, Debbie L;Lo
- 通讯作者:Lo
Association between first-line antidepressant use and risk of dementia in older adults: a retrospective cohort study.
一线抗抑郁药的使用与老年人痴呆风险之间的关联:一项回顾性队列研究。
- DOI:
- 发表时间:2023-09-13
- 期刊:
- 影响因子:0
- 作者:Wang HG;Chen WH;Chang SH;Zhang T;Shao H;Guo J;Lo-Ciganic WH
- 通讯作者:Lo-Ciganic WH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Hsuan Lo-Ciganic其他文献
Wei-Hsuan Lo-Ciganic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Hsuan Lo-Ciganic', 18)}}的其他基金
Developing and Evaluating a Machine-Learning Opioid Prediction & Risk-Stratification E-Platform (DEMONSTRATE)
开发和评估机器学习阿片类药物预测
- 批准号:
10442365 - 财政年份:2021
- 资助金额:
$ 63.48万 - 项目类别:
Developing and Evaluating a Machine-Learning Opioid Prediction & Risk-Stratification E-Platform (DEMONSTRATE)
开发和评估机器学习阿片类药物预测
- 批准号:
10442365 - 财政年份:2021
- 资助金额:
$ 63.48万 - 项目类别:
Developing a Real-Time Trajectory Tool to Identify Potentially Unsafe Concurrent Opioid and Benzodiazepine Use among Older Adults
开发实时轨迹工具来识别老年人同时使用阿片类药物和苯二氮卓类药物的潜在不安全情况
- 批准号:
9923531 - 财政年份:2019
- 资助金额:
$ 63.48万 - 项目类别:
Using a predicting Risky Opioid-Benzodiazepine Trajectory e-Care Tool (PROTeCT) to identify high-risk regions
使用预测风险阿片类药物-苯二氮卓轨迹电子护理工具 (PROTeCT) 来识别高风险区域
- 批准号:
10170668 - 财政年份:2019
- 资助金额:
$ 63.48万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Wearable Sensor and Digital Technologies for Quantitative Assessment and Remote Monitoring of Symptoms in Myasthenia Gravis
用于定量评估和远程监测重症肌无力症状的可穿戴传感器和数字技术
- 批准号:
10470564 - 财政年份:2022
- 资助金额:
$ 63.48万 - 项目类别:
Developing and Evaluating a Machine-Learning Opioid Prediction & Risk-Stratification E-Platform (DEMONSTRATE)
开发和评估机器学习阿片类药物预测
- 批准号:
10442365 - 财政年份:2021
- 资助金额:
$ 63.48万 - 项目类别:
Developing and Evaluating a Machine-Learning Opioid Prediction & Risk-Stratification E-Platform (DEMONSTRATE)
开发和评估机器学习阿片类药物预测
- 批准号:
10442365 - 财政年份:2021
- 资助金额:
$ 63.48万 - 项目类别:
National Network of Libraries of Medicine MidContinental (Region 4) and National Training Office
国家医学图书馆网络 MidContinental(第 4 区)和国家培训办公室
- 批准号:
9115432 - 财政年份:2016
- 资助金额:
$ 63.48万 - 项目类别:
National Network of Libraries of Medicine MidContinental (Region 4) and National Training Office
国家医学图书馆网络 MidContinental(第 4 区)和国家培训办公室
- 批准号:
9920192 - 财政年份:2016
- 资助金额:
$ 63.48万 - 项目类别: