Improving AI/ML-Readiness of data generated from NIH-funded research on oral cancer screening
提高 NIH 资助的口腔癌筛查研究生成的数据的 AI/ML 就绪性
基本信息
- 批准号:10594120
- 负责人:
- 金额:$ 28.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdministrative SupplementAlgorithmsArizonaCancer DetectionClinicalDataData SetDevelopmentDiagnosisEarly DiagnosisEquilibriumFAIR principlesFundingImageLabelLesionLightMalignant - descriptorMalignant NeoplasmsModelingModernizationMorbidity - disease rateOncologyOntologyOptical Coherence TomographyOralOral DiagnosisOropharyngeal Squamous Cell CarcinomaParentsPatientsReadinessResearchResource-limited settingScreening for Oral CancerSurvival RateTechniquesTechnologyTranslatingTranslationsUncertaintyUnited States National Institutes of HealthUniversitiesVisionbasecancer classificationcancer diagnosiscancer imagingcommercializationcostdata ecosystemdata interoperabilitydata repositorydeep learningflexibilityhigh risk populationimage processingimaging modalityimaging systemimprovedlow and middle-income countriesmachine learning modelmalignant mouth neoplasmmortalitymultimodal datamultimodalityopen dataoptical imagingoral dysplasiaportabilityprototypetooltrustworthiness
项目摘要
Oral and oropharyngeal squamous cell carcinoma (OSCC) together rank as the sixth most common cancer
worldwide, accounting for 400,000 new cancer cases each year. Two-thirds of these cancers occur in low- and
middle-income countries (LMICs). While the 5-year survival rate in the U.S. is 62%, the survival rate is only 10-
40% and cure rate around 30% in the developing world. To meet the need for technologies that enable
comprehensive oral cancer screening and diagnosis in low resource settings (LRS). In the parent R01DE030682
project titled “Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource
Setting”, we have formed an interdisciplinary team with complementary expertise in optical imaging, oncology,
deep learning, technology translation, and commercialization to develop, validate, and clinically translate a
multimodal intraoral imaging system for oral cancer detection and diagnosis. We will achieve the project objective
through three Aims: (1) develop a portable, semi-flexible, and compact multimodal intraoral imaging system; (2)
evaluate the clinical feasibility of the prototyped intraoral imaging system and develop deep learning based image
processing algorithms for early detection, diagnosis, and mapping of oral dysplastic and malignant lesions; and
(3) validate the capability of the prototyped intraoral imaging system for diagnosing oral dysplasia and malignant
lesions.
In our UH3CA239682 project titled “Low-cost Mobile Oral Cancer Screening for Low Resource Setting”, we
have screened ~7,000 high-risk population for oral cancer and obtained at least two pairs of dual-modal images
(white light and autofluorescence) from each patient and obtained more than 28,000 de-identified images and
related information. It is the largest image dataset on oral cancers. With this Administrative Supplements, we will
make the image data AI/ML-ready by improving data compatibility with AI/ML tools, cleaning dataset, balancing
data, reducing uncertainty, improving the interoperability of the data with ontology, and improving trustworthiness
of AI/ML models using pixel-level annotation. We will also demonstrate the use of the transformed data in AI/ML
applications through (1) multi-class oral cancer classification using the transformed multi-modal data and (2)
interpretable and trustworthy AI model using image-level labels and pixel-level annotation.
The image data and machine learning models will be available through The University of Arizona Research
Data Repository (ReDATA). Completion of this project will accelerate development of AI/ML-based techniques
for early oral cancer detection in low-resource settings, reducing morbidity and mortality. It will make data FAIR
(Findable, Accessible, Interoperable, and Reusable) with high impact for open science, contributing to the NIH
vision of a modernized and integrated biomedical data ecosystem. The parent R01 project will directly benefit
from this dataset and the developed AI/ML algorithms as deep learning segmentation based on dual-modal
images will be used to locate the suspicious regions for optical coherence tomography (OCT) imaging.
口腔和口咽鳞状细胞癌 (OSCC) 一起成为第六大常见癌症
全球每年新增癌症病例 40 万例,其中三分之二发生在低度和中度癌症中。
中等收入国家 (LMIC) 的 5 年生存率为 62%,而美国的生存率仅为 10%。
发展中国家的治愈率约为 40%,治愈率约为 30%,以满足对技术的需求。
资源匮乏环境中的综合口腔癌筛查和诊断 (LRS) 在父 R01DE030682 中。
项目名称为“用于低资源条件下口腔癌检测和诊断的多模态口内成像系统”
“环境”,我们组建了一支跨学科团队,在光学成像、肿瘤学、
深度学习、技术转化和商业化,以开发、验证和临床转化
用于口腔癌检测和诊断的多模态口腔内成像系统我们将实现该项目目标。
通过三个目标:(1)开发便携式、半柔性、紧凑的多模态口腔内成像系统;(2)
评估原型口内成像系统的临床可行性并开发基于深度学习的图像
用于口腔发育不良和恶性病变的早期检测、诊断和绘图的处理算法;以及
(3) 验证原型口内成像系统诊断口腔发育不良和恶性病变的能力
病变。
在我们题为“低资源环境下的低成本移动口腔癌筛查”的 UH3CA239682 项目中,我们
筛查了约 7,000 名口腔癌高危人群,并获得了至少两对双模态图像
(白光和自发荧光)从每位患者身上获得了超过 28,000 张去识别图像
相关信息。这是有关口腔癌的最大图像数据集。
通过提高与 AI/ML 工具的数据兼容性、清理数据集、平衡,使图像数据为 AI/ML 做好准备
数据,减少不确定性,提高数据与本体的互操作性,提高可信度
我们还将演示如何在 AI/ML 中使用转换后的数据。
通过 (1) 使用转换后的多模态数据进行多类口腔癌分类和 (2)
使用图像级标签和像素级注释的可解释且值得信赖的人工智能模型。
图像数据和机器学习模型将通过亚利桑那大学研究中心提供
数据存储库(ReDATA)的完成将加速基于人工智能/机器学习的技术的开发。
在资源匮乏的地区进行早期口腔癌检测,降低发病率和死亡率,这将使数据变得公平。
(可查找、可访问、可互操作和可重复使用)对开放科学具有重大影响,为 NIH 做出贡献
现代化、集成的生物医学数据生态系统的愿景将直接受益于母项目 R01。
根据该数据集和开发的 AI/ML 算法作为基于双模态的深度学习分割
图像将用于定位光学相干断层扫描(OCT)成像的可疑区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rongguang Liang其他文献
Rongguang Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rongguang Liang', 18)}}的其他基金
Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
- 批准号:
10580165 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10544780 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
- 批准号:
10377856 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
- 批准号:
10663873 - 财政年份:2021
- 资助金额:
$ 28.23万 - 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
- 批准号:
10663873 - 财政年份:2021
- 资助金额:
$ 28.23万 - 项目类别:
Multimodal Intraoral Imaging System for Oral Cancer Detection and Diagnosis in Low Resource Setting
用于资源匮乏环境下口腔癌检测和诊断的多模态口腔内成像系统
- 批准号:
10465103 - 财政年份:2021
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9762395 - 财政年份:2018
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9788365 - 财政年份:2018
- 资助金额:
$ 28.23万 - 项目类别:
Low-cost Mobile Oral Cancer Screening for Low Resource Setting
资源匮乏的低成本移动口腔癌筛查
- 批准号:
9031360 - 财政年份:2016
- 资助金额:
$ 28.23万 - 项目类别:
相似海外基金
Cloud based neuroimaging analysis for identifying traumatic braininjuries and related changes
基于云的神经影像分析,用于识别创伤性脑损伤和相关变化
- 批准号:
10827676 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
- 批准号:
10859277 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:
10834339 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
- 批准号:
10888495 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
- 批准号:
10741330 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别: