Combining Brain Connectivity and Excitability to Plan Epilepsy Surgery in Children: A New Approach to Augment Presurgical Intracranial Electroencephalography
结合大脑连接性和兴奋性来规划儿童癫痫手术:增强术前颅内脑电图的新方法
基本信息
- 批准号:10592653
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBiological MarkersBostonBrainBrain regionCharacteristicsChildChild CareClinicalCognitionCommunitiesComplementComplexComputer AssistedCouplingDataDiseaseElectroencephalographyElectrophysiology (science)EpilepsyEvaluationExcisionFarGoFreedomFrequenciesGoalsHumanInformation NetworksIntractable EpilepsyLifeLinkLogistic RegressionsMeasuresMethodologyMethodsMissionMonitorNational Institute of Neurological Disorders and StrokeOperative Surgical ProceduresOutcomePathologicPatientsPatternPediatric HospitalsPerformancePhasePropertyPublic HealthQuality of lifeROC CurveReaderReadingResearchRetrospective StudiesRiskSeizuresSignal TransductionTechniquesTestingTissuesVisualanalytical methodclinical caredisabilityepileptiformexperiencegraph theoryimprovedneuroimagingneurosurgerynovelnovel strategiespredictive modelingpreventsignal processingsuccesssurgery outcome
项目摘要
Project Summary
For children with drug-resistant epilepsy (DRE), epilepsy surgery is the best treatment to stop seizures and
prevent a life of disability. Crucial to the success of surgery is the ability to identify the area of the brain that is
responsible for generating seizures, called epileptogenic zone (EZ). The best way to estimate the EZ is by
recording the brain activity invasively via intracranial electroencephalography (icEEG), aiming to capture
seizures and locate the area that generates them. Yet, one of three patients continue to have seizures after
surgery. This suggests that there is still an unmet need for new methods that go beyond traditional icEEG
interpretation and offer novel information on underlying epileptogenicity in patients undergoing epilepsy surgery
evaluation. To address this need, we propose a novel approach to analyze icEEG that takes advantage of new
“invisible” signal characteristics, which can inform us on epileptogenicity, albeit not visible to the human reader.
Epileptogenicity is a very complex brain property that depends on the interplay between altered excitability and
connectivity. Recent evidence suggests that, to treat focal DRE, we must localize pathological regions (depicted
by altered excitability) and also appreciate how they interact within the epileptogenic network (identifying altered
connections). In this application, we propose to develop a novel twofold approach to optimize the interpretation
of icEEG, which quantifies and integrates both local brain excitability (via phase-amplitude coupling, PAC) and
functional connectivity (FC), using “silent” icEEG epochs (i.e. without frank epileptiform patterns), in order to
define novel measures of “interconnected-excitability” (which we will call Network-PAC). Our main goal is to
develop a new computer-aided approach to boost icEEG reading and improve surgical planning in children with
DRE, without requiring the recording of seizures or even the identification of frank interictal epileptiform activity.
We hypothesize that the EZ is characterized not only by a high ‘local excitability level’ (strong PAC) but also by
strong connections with other ‘excitable’ tissue, thus generating a hyper-excitable network that is responsible for
generating seizures. We will pursue two specific aims: (1) Identify regions of high inter-connected excitability and
assess their ability to define the seizure onset zone (SOZ); (2) Develop a predictive model that integrates patient-
specific icEEG information about both local PAC and functional networks (independently from the presence of
frank epileptiform patterns) to predict surgical outcome following a resection. This application will combine the
use of cutting-edge electrophysiological and signal processing concepts (cross-frequency coupling, connectivity,
and graph theory) together with extensive neuroimaging and clinical experience with children. Our research will
present to the epilepsy community a new approach to estimate the EZ before epilepsy surgery, which will go
beyond the visual identification of seizures or spikes on the EEG. This can significantly impact the clinical care
of children with DRE in the long-term, by boosting the pre-surgical interpretation of icEEG and reducing the need
for extended invasive monitoring - which is often needed to capture spontaneous seizures.
项目概要
对于患有耐药性癫痫(DRE)的儿童,癫痫手术是阻止癫痫发作和治疗的最佳治疗方法。
手术成功的关键是能够识别大脑的哪个区域。
负责产生癫痫发作的区域,称为致癫痫区 (EZ)。估计 EZ 的最佳方法是
通过颅内脑电图(icEEG)侵入性记录大脑活动,旨在捕获
然而,三名患者中的一名在之后仍然出现癫痫发作。
这表明对传统 icEEG 之外的新方法的需求仍然未得到满足。
解释并提供有关接受癫痫手术的患者潜在致癫痫性的新信息
为了满足这一需求,我们提出了一种利用新方法来分析 icEEG 的新方法。
“看不见的”信号特征,可以告诉我们致癫痫性,但人类读者看不到。
致癫痫性是一种非常复杂的大脑特性,取决于兴奋性改变和癫痫发作之间的相互作用。
最近的证据表明,为了治疗局灶性 DRE,我们必须定位病理区域(如图所示)
通过改变兴奋性)并了解它们如何在致癫痫网络中相互作用(识别
在此应用中,我们建议开发一种新颖的双重方法来优化解释。
icEEG,它量化并整合局部大脑兴奋性(通过相位幅度耦合,PAC)和
功能连接(FC),使用“沉默”的 icEEG 纪元(即没有明显的癫痫样模式),以便
定义“互联兴奋性”的新颖衡量标准(我们将其称为 Network-PAC)。
开发一种新的计算机辅助方法来提高 icEEG 读数并改进患有以下疾病的儿童的手术计划
DRE,不需要记录癫痫发作,甚至不需要识别明显的发作间期癫痫样活动。
我们追求 EZ 的特点不仅在于高“局部兴奋性水平”(强 PAC),还在于
与其他“兴奋”组织的紧密联系,从而产生一个超兴奋网络,负责
我们将追求两个具体目标:(1)识别高相互关联的兴奋性和癫痫发作的区域。
评估他们定义癫痫发作区(SOZ)的能力;(2)开发一个整合患者的预测模型;
有关本地 PAC 和功能网络的特定 icEEG 信息(独立于是否存在
坦率的癫痫样模式)来预测切除后的手术结果。
使用尖端的电生理学和信号处理概念(跨频耦合、连接性、
和图论)以及广泛的神经影像学和儿童临床经验。
向癫痫界提出一种在癫痫手术前估计 EZ 的新方法,该方法将
超出了脑电图上癫痫发作或尖峰的视觉识别范围,这可能会显着影响临床护理。
通过加强 icEEG 的术前解释并减少需要,从长远来看,可以减少患有 DRE 的儿童
用于扩展侵入性监测 - 通常需要捕获自发性癫痫发作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleonora Tamilia其他文献
Eleonora Tamilia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Histopathologic interrogation of laminar microcircuits underlying cognition in frontotemporal dementia
额颞叶痴呆认知层状微电路的组织病理学研究
- 批准号:
10643786 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
- 批准号:
10643695 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
- 批准号:
10648171 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别: