High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
基本信息
- 批准号:10264069
- 负责人:
- 金额:$ 75.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAutopsyBehaviorBehavioralBehavioral ModelBiological AssayBiological ModelsBrainCellsCommunitiesDataDevelopmentDiseaseDisease modelDrug ScreeningGene ExpressionGenesGeneticGoalsHumanImageIndividualInheritedLeadLiteratureMethodsMissense MutationModelingMolecularMutationNeuronsOrthologous GenePathway AnalysisPathway interactionsPharmacologyPhenotypeProteinsPublishingRNA SplicingReagentReportingResourcesRiskRoleSeizuresSignal TransductionSleepSleep disturbancesSocial BehaviorSpliced GenesStartle ReactionSystemTestingTimeTissue-Specific Gene ExpressionTranslatingVariantVertebratesZebrafishautism spectrum disorderbasebehavior testbehavioral phenotypingbrain behaviorcohortcomorbiditycostcost effectivenessde novo mutationdisorder riskexperimental studygene functiongenetic risk factorgenetic testinggenome sequencinggenome wide association studygenome-widehabituationhigh throughput analysishigh throughput screeninghigh-throughput drug screeningimaging approachimprovedin vivomolecular phenotypemutantneurodevelopmentnovelnovel therapeutic interventionnovel therapeuticsnull mutationrelative effectivenessrisk variantscreeningsocialtranscriptomicswhole genome
项目摘要
Autism spectrum disorder (ASD) is caused by both environmental and genetic factors, with the genetic
contribution estimated at 60-80%. Dozens of genes that increase risk for ASD have been identified, most based
on de novo mutations, but these mutations are predicted to account for only 15-20% of ASD cases. Thus, the
majority of the genetic contribution to ASD is predicted to result from common and rare inherited variation, but
few such genes have been identified. Recently, using whole genome sequencing, we reported genome wide
evidence for >60 ASD risk genes, 26 of them novel for ASD, with signals derived from inherited and de novo
protein truncating or missense mutations. The functions of most of these genes are unknown, so a crucial and
necessary next step is to explore their impact on neurodevelopment and neuronal function using a model
organism. The current pace of translating genetic risk factors into phenotypes, mechanisms and therapies is
limited in part by inefficiencies with in vivo mammalian model systems, which makes them impractical for creating
and behaviorally testing large numbers of mutant lines. Here, we leverage the zebrafish, which occupies a unique
niche as a vertebrate model with features amenable to both in vivo screening and mechanistic understanding,
including ex utero development, transparency, small size, rapid development, a conserved yet relatively simple
vertebrate brain, behaviors relevant to ASD, and cost-effectiveness relative to mammalian models. While the
zebrafish cannot recapitulate ASD and has limitations for modeling a human disorder, an emerging literature
supports the notion that it is a useful model to study the functions of genes that contribute to ASD risk. Rather
than assess ASD-risk genes one at a time, we will accelerate progress towards mechanistic understanding via
high-throughput assays and analyses. In Specific Aim 1 we will generate null mutations in the zebrafish orthologs
of 24 high confidence, novel, genome-wide significant ASD risk genes, and systematically test each mutant for
neurodevelopmental, behavioral, neuronal network, and transcriptomic phenotypes. In Specific Aim 2, we will
use transcriptomic analyses, at the whole brain and single cell levels, to integrate ASD risk genes into functional
networks, and test for convergence across genes and species, including ASD post mortem brain. We will also
test for functional associations among behavioral phenotypes that are often co-morbid in ASD, such as disrupted
sleep and social behavioral deficits. In Specific Aim 3 we will perform mechanistic studies to understand how
mutation of specific ASD-risk genes leads to phenotypes. This project will efficiently and cost-effectively create
and characterize vertebrate animal models for a large number of novel ASD risk genes. These animal models
will be a valuable resource for the community, particularly for large-scale in vivo drug screens to identify new
therapies for ASD.
自闭症谱系障碍(ASD)是由环境和遗传因素共同引起的,遗传因素
贡献估计为 60-80%。已经发现了数十种增加自闭症谱系障碍风险的基因,其中大多数是基于
但这些突变预计仅占 ASD 病例的 15-20%。因此,
据预测,自闭症谱系障碍的大部分遗传因素是由常见和罕见的遗传变异造成的,但是
很少有这样的基因被发现。最近,利用全基因组测序,我们报告了全基因组
超过 60 个 ASD 风险基因的证据,其中 26 个是 ASD 的新基因,信号来自遗传和新生
蛋白质截短或错义突变。大多数这些基因的功能是未知的,因此一个至关重要的和
下一步必要的是使用模型探索它们对神经发育和神经元功能的影响
生物。目前将遗传风险因素转化为表型、机制和疗法的步伐是
部分受到体内哺乳动物模型系统效率低下的限制,这使得它们对于创建
并对大量突变系进行行为测试。在这里,我们利用斑马鱼,它占据了独特的地位
利基作为一种脊椎动物模型,具有适合体内筛选和机制理解的特征,
包括子宫外发育、透明、体积小、发育快、保守但相对简单
脊椎动物大脑、与 ASD 相关的行为以及相对于哺乳动物模型的成本效益。虽然
斑马鱼无法重现自闭症谱系障碍,并且在模拟人类疾病方面存在局限性,这是一项新兴文献
支持这样的观点,即它是研究导致 ASD 风险的基因功能的有用模型。相当
与一次评估一个自闭症谱系障碍(ASD)风险基因相比,我们将通过以下方式加速机制理解的进展:
高通量测定和分析。在特定目标 1 中,我们将在斑马鱼直向同源物中生成无效突变
24 个高置信度、新颖、全基因组显着的 ASD 风险基因,并系统地测试每个突变体
神经发育、行为、神经元网络和转录组表型。在具体目标 2 中,我们将
在全脑和单细胞水平上使用转录组分析,将 ASD 风险基因整合到功能中
网络,并测试跨基因和物种的收敛性,包括 ASD 死后大脑。我们也会
测试自闭症谱系障碍 (ASD) 中常见的行为表型之间的功能关联,例如紊乱
睡眠和社交行为缺陷。在具体目标 3 中,我们将进行机制研究以了解如何
特定 ASD 风险基因的突变会导致表型。该项目将有效且具有成本效益地创造
并表征脊椎动物模型中大量新的 ASD 风险基因。这些动物模型
将成为社区的宝贵资源,特别是对于大规模体内药物筛选以识别新的药物
自闭症谱系障碍 (ASD) 的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL H GESCHWIND其他文献
DANIEL H GESCHWIND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL H GESCHWIND', 18)}}的其他基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Uncovering the Genetic Mechanisms of the Chromosome 17q21.31 Tau Haplotype on Neurodegeneration Risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10789246 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
UCLA High-Throughput Neuropsychiatric Disorder Phenotyping Center (UCLA HT-NPC)
加州大学洛杉矶分校高通量神经精神疾病表型中心 (UCLA HT-NPC)
- 批准号:
10643541 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10902613 - 财政年份:2021
- 资助金额:
$ 75.68万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10295518 - 财政年份:2021
- 资助金额:
$ 75.68万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10295512 - 财政年份:2021
- 资助金额:
$ 75.68万 - 项目类别:
High-throughput Modeling of Autism Risk Genes using Zebrafish - DIVERSITY SUPPLEMENT
使用斑马鱼对自闭症风险基因进行高通量建模 - 多样性补充
- 批准号:
10818861 - 财政年份:2020
- 资助金额:
$ 75.68万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10478187 - 财政年份:2020
- 资助金额:
$ 75.68万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10121604 - 财政年份:2020
- 资助金额:
$ 75.68万 - 项目类别:
Genetic Investigation of Minimally Verbal Children with ASD
患有自闭症谱系障碍(ASD)的最少语言儿童的基因调查
- 批准号:
10689725 - 财政年份:2019
- 资助金额:
$ 75.68万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
HIV Tat-associated Sensory Neuropathy and the Contribution of Toll-like Receptor Pathway
HIV Tat 相关感觉神经病变和 Toll 样受体通路的贡献
- 批准号:
10838798 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
PREVENTING ALZHEIMER’S DISEASE-LIKE BRAIN PATHOLOGY IN HIV INFECTION BY TARGETING CCR5
通过靶向 CCR5 预防 HIV 感染中的阿尔茨海默病样脑部病变
- 批准号:
10700624 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Molecular Phenotyping of Cortical Cell Types in ALS-Related Neurodegeneration
ALS 相关神经变性中皮质细胞类型的分子表型
- 批准号:
10745149 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别: