Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
基本信息
- 批准号:10264175
- 负责人:
- 金额:$ 52.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimalsAreaBiologicalBiological ModelsBlood CirculationBrainCRISPR/Cas technologyCardiacCardiovascular systemCessation of lifeCognitionConsumptionDataDevelopmentDiseaseEndocrineExerciseExperimental DesignsExperimental ModelsFatty acid glycerol estersFibrinogenFoundationsFundingFutureGene Transfer TechniquesGenerationsGenesHealthHealth BenefitHealth PromotionHealth protectionHeartHippocampus (Brain)HumanHypothalamic structureKnock-inKnock-in MouseLigandsLiverLiver CirculationLongitudinal StudiesMachine LearningMediatingMetabolicMetabolismMetalsMiningModelingMolecularMultiomic DataMusMuscleMutationNeurodegenerative DisordersOrganPhenotypePhysical activityPreventionProteinsProteomicsPsyche structureRattusRegulationRegulator GenesResearch DesignRoleSiteSkeletal MuscleSolidSuperoxide DismutaseTechniquesTetanus Helper PeptideTimeTissuesTransducersTransgenesTransgenic MiceUnited States National Institutes of Healthautocrinebasebisulfite sequencingcognitive functiondesigneffective interventionendurance exerciseexercise capacityexercise trainingexperienceextracellulargain of functionimprovedinnovationloss of functionmental functionmetabolomicsmultidisciplinarymultiple omicsparacrinephenotypic dataphosphoproteomicspre-clinicalpreventprogramsreceptorresponseskeletaltherapeutic developmenttherapeutically effectivetranscriptome sequencingtranscriptomics
项目摘要
ABSTRACT
Regular exercise (physical activity) is the most effective intervention that promotes health and combats non-
communicable disease (NCD). However, our understanding of the molecule(s) responsible for the superb
benefits of exercise is obscure. The NIH Common Fund project “Molecular Transducers of Physical Activity
Consortium (MoTrPAC)” is a large-scale discovery study designed to understand the molecular responses to
exercise training, which has released the first batch of multi-omics data, including RNA-seq, Reduced
Representation Bisulfite Sequencing, proteomics, phosphoproteomics, acetylproteomics, and targeted and
untargeted metabolomics, from 5 tissues collected at different time points in rats following an acute bout of
endurance exercise. These endeavors have laid a solid foundation for elucidation of the molecular transducer of
physical activity. We have recently made significant progress in four areas, which poised us to explore these
data and elucidate the mechanism(s) in an unprecedented manner. Specifically, 1) We have obtained similar
time-course, transcriptomics data in 4 tissues in mice following acute and long-term endurance exercise and
developed machine learning capability for mining the multi-omics data for identification of regulatory factors that
mediate the exercise benefits; 2) We have perfected CRISPR/Cas9-mediated gene editing for generation of loss-
of-function knock-in mice as well as techniques to generate tissue-specific, inducible gain-of-function transgenic
mice; 3) We have established comprehensive phenotypic analysis in mice; and 4) We have had a successful
experience in elucidating the regulation and function of extracellular superoxide dismutase (EcSOD), a humoral
factor expressed in skeletal muscle and promoted by endurance exercise, in mediating the health benefits and
protection against diseases. We hypothesize that endurance exercise promotes expression and release of one
or more humoral factors from one or multiple tissues/organs, which is sufficient and necessary mediating the
health benefits of exercise. To this end, we propose
1) Identify candidate molecular transducers of physical activity by machine learning-based multi-omics modeling.
2) Generate loss-of-function knock-in and tissue-specific, gain-of-function transgenic mice using CRISPR/Cas9-
mediated gene editing and transgenesis.
3) Elucidate the role of the candidate molecular transducers of physical activity in health benefits of exercise.
The experimental design and model systems are both conceptually and technically innovative. The findings will
significantly improve the mechanistic understanding of exercise-induced adaptations with great potential impact
on the future development of therapeutics for NCD.
抽象的
定期锻炼(身体活动)是促进健康和对抗非健康的最有效的干预措施
然而,我们对导致传染性疾病(NCD)的分子的了解非常有限。
运动的好处并不明确。美国国立卫生研究院共同基金项目“身体活动的分子传感器”。
Consortium (MoTrPAC)”是一项大规模发现研究,旨在了解分子反应
运动训练,发布了第一批多组学数据,包括RNA-seq、Reduced
代表性亚硫酸氢盐测序、蛋白质组学、磷酸化蛋白质组学、乙酰蛋白质组学以及靶向和
非靶向代谢组学,来自大鼠急性发作后不同时间点收集的 5 个组织
这些努力为阐明分子传感器奠定了坚实的耐力基础。
我们最近在四个领域取得了重大进展,这使我们准备好探索这些领域。
数据并以前所未有的方式阐明机制具体来说,1)我们获得了类似的结果。
急性和长期耐力运动后小鼠 4 个组织的时间进程、转录组学数据
开发了机器学习能力,用于挖掘多组学数据,以识别监管因素
介导运动益处;2) 我们已经完善了 CRISPR/Cas9 介导的基因编辑,以产生损失-
功能敲入小鼠以及产生组织特异性、可诱导的功能获得转基因的技术
小鼠;3) 我们已经在小鼠中建立了全面的表型分析;4) 我们已经成功地进行了
阐明细胞外超氧化物歧化酶(EcSOD)的调节和功能的经验,EcSOD是一种体液
在骨骼肌中表达并通过耐力运动促进的因素,在调节健康益处和
我们勇敢地说,运动耐力可以促进一种物质的表达和释放。
来自一种或多种组织/器官的一种或多种体液因子,其对于调节
为此,我们建议运动对健康的好处。
1)通过基于机器学习的多组学建模来识别身体活动的候选分子传感器。
2) 使用 CRISPR/Cas9 生成功能缺失的敲入和组织特异性、功能获得的转基因小鼠
介导的基因编辑和转基因。
3) 阐明体力活动的候选分子传感器在运动对健康的益处中的作用。
实验设计和模型系统在概念和技术上都具有创新性。
显着提高对运动引起的适应的机制理解,具有巨大的潜在影响
关于非传染性疾病治疗方法的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Yan其他文献
Zhen Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Yan', 18)}}的其他基金
Exercise-Induced Mitophagy In Hippocampal Neurons Against AD
运动诱导的海马神经元线粒体自噬对抗 AD
- 批准号:
10765466 - 财政年份:2022
- 资助金额:
$ 52.18万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10380087 - 财政年份:2021
- 资助金额:
$ 52.18万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10551274 - 财政年份:2021
- 资助金额:
$ 52.18万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10225076 - 财政年份:2021
- 资助金额:
$ 52.18万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10413230 - 财政年份:2020
- 资助金额:
$ 52.18万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10771467 - 财政年份:2020
- 资助金额:
$ 52.18万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
阿拉善荒漠啮齿动物集合群落对气候变化的响应研究
- 批准号:31772667
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Determining the shared neuronal network mechanisms of focal epileptic discharges and impaired memory processing in temporal lobe epilepsy
确定颞叶癫痫局灶性癫痫放电和记忆处理受损的共享神经元网络机制
- 批准号:
10734254 - 财政年份:2023
- 资助金额:
$ 52.18万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 52.18万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 52.18万 - 项目类别:
Spinal Neuromodulation to Promote Physiologic and Molecular Plasticity in theInjured Spinal Cord
脊髓神经调节促进受损脊髓的生理和分子可塑性
- 批准号:
10805726 - 财政年份:2023
- 资助金额:
$ 52.18万 - 项目类别:
Reversibility of brain glucose kinetics in type 2 diabetic subjects
2 型糖尿病受试者脑葡萄糖动力学的可逆性
- 批准号:
10664102 - 财政年份:2023
- 资助金额:
$ 52.18万 - 项目类别: