Optogenetic dissection of striatal circuits in a mouse model of human dystonia
人类肌张力障碍小鼠模型纹状体回路的光遗传学解剖
基本信息
- 批准号:9114179
- 负责人:
- 金额:$ 17.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-08 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsApplications GrantsAreaBasal GangliaBehavioralBiochemicalBrainBrain InjuriesCellsClinicalCorpus striatum structureDevelopmentDiseaseDissectionDoctor of PhilosophyDyskinetic syndromeDystoniaElectromyographyElectrophysiology (science)Functional disorderFutureGenesGenotypeHealthHumanHyperactive behaviorIn VitroInheritedLaboratoriesLeadLearningLightLong-Term DepressionLong-Term PotentiationMentorsModelingMonitorMovementMovement DisordersMusNatureNeurologicNeurologyNeuronsParoxysmal DystoniaPathway interactionsPatientsPatternPhenotypePhysiciansPhysiologicalPopulationPrimary DystoniasResearchResearch PersonnelResearch ProposalsResourcesRoleScientistSecondary DystoniaSiteSliceStructureSymptomsSynapsesSynaptic plasticityTechniquesTestingTimeTrainingTransgenic MiceWhole-Cell RecordingsWild Type Mouseawakebasebehavioral neurologycareercareer developmentcomparative efficacyfluorophorehuman diseasein vivomouse modelnervous system disorderneural patterningneuropathologyneurophysiologyneurotransmissionnew therapeutic targetnoveloptogeneticspost-doctoral trainingreduce symptomsrelating to nervous systemskillssymptomatic improvementtheoriestherapeutic developmenttherapy developmenttool
项目摘要
DESCRIPTION (provided by applicant): Primary dystonias are disabling neurological conditions which begin in the prime of patients' lives. Scientists have identified genes involved i some inherited forms of the disease, but little is known about the pathophysiology, and at present treatments is limited and symptomatic in nature. As the brains of such patients show no neuropath logical abnormalities, it is hypothesized that dystonia is a disease of abnormal circuit activity. This proposal is aimed at dissecting the circuitry of one of the key movement control centers, the striatum, in a mouse model of dystonia. In examining the striatal circuitry, we hope to identify new targets for therapeutic development in dystonia as well as other hyperkinetic movement disorders. We propose to use several novel tools to better understand circuit dysfunction in dystonia. First, we plan to use a new mouse model of a human dystonia, paroxysmal nonkinesigenic dyskinesia (PNKD), which is one of very few animal models that recapitulate the clinical features of human dystonia. Second, we plan to employ a new experimental tool, ontogenetic, which allows researchers to control the activity of specific cell populations in the brain. In Aim 1, we will use ontogenetic and in vivo electrophysiology to identify the pathological firing patterns of striatal neurons in awake-behaving PNKD mice, and for the first time distinguish how differences in the activity of direct-pathway and indirect- pathway neurons contribute to dystonia. In Aim 2, we will use in vitro electrophysiology to determine the cellular and synaptic substrate for the pathological firing patterns identified in PNKD mice in vivo. Finally, in Aim 3, we will take what we have learned from both in vivo and in vitro studies of dystonic mice to determine what aspects of aberrant striatal activity are necessary and sufficient to cause dystonia, by using ontogenetic in behaving animals. We will also ontogenetically modify striatal firing patterns to reduce or eliminate the symptoms of dystonia in PNKD mice. Overall, we are hopeful this line of research will not only shed light on long-held theories about basal ganglia circuit dysfunction in dystonia, but will yield new areas fo therapeutic development. I am a physician-scientist with a strong commitment to a career in academic neurology, focused on identifying the circuit basis of neurological disease. I combine PhD and postdoctoral training in neurophysiology with subspecialty training in behavioral neurology and movement disorders. The career development entailed in this research proposal will bring my skills into mouse models of neurological disease and cultivate cutting-edge neurophysiological and optogenetic techniques as a means of understanding and disrupting abnormal patterns of neural activity. The mentoring entailed in this proposal will provide me the scientific and professional resources to continue my own development as an investigator, enabling me to submit competitive grant applications and lead my own laboratory in the future.
描述(由申请人提供):原发性肌张力障碍是在患者生命的黄金时期开始的致残性神经系统疾病。科学家们已经确定了与这种疾病的某些遗传形式有关的基因,但对其病理生理学知之甚少,目前的治疗方法有限,而且本质上是针对症状的。由于此类患者的大脑没有表现出神经病理学异常,因此推测肌张力障碍是一种异常回路活动的疾病。该提案旨在剖析肌张力障碍小鼠模型中关键运动控制中心之一纹状体的电路。在检查纹状体回路时,我们希望找到肌张力障碍和其他多动性运动障碍治疗开发的新靶点。我们建议使用几种新颖的工具来更好地了解肌张力障碍的回路功能障碍。首先,我们计划使用一种新的人类肌张力障碍小鼠模型,即阵发性非运动性运动障碍(PNKD),这是极少数能够概括人类肌张力障碍临床特征的动物模型之一。其次,我们计划采用一种新的实验工具,即个体发生学,它允许研究人员控制大脑中特定细胞群的活动。在目标 1 中,我们将利用个体发生学和体内电生理学来识别清醒行为 PNKD 小鼠纹状体神经元的病理放电模式,并首次区分直接通路和间接通路神经元活动的差异如何影响肌张力障碍。在目标 2 中,我们将利用体外电生理学来确定 PNKD 小鼠体内病理放电模式的细胞和突触底物。最后,在目标 3 中,我们将利用从肌张力障碍小鼠的体内和体外研究中学到的知识,通过使用行为动物的个体发育来确定异常纹状体活动的哪些方面对于引起肌张力障碍是必要和充分的。我们还将在个体发育上修改纹状体放电模式,以减少或消除 PNKD 小鼠的肌张力障碍症状。总的来说,我们希望这一系列研究不仅能够阐明关于肌张力障碍基底神经节回路功能障碍的长期理论,而且能够为治疗开发带来新的领域。我是一名医师科学家,坚定地致力于学术神经病学的职业生涯,专注于确定神经系统疾病的回路基础。我将神经生理学的博士和博士后培训与行为神经学和运动障碍的亚专业培训结合起来。这项研究计划所涉及的职业发展将把我的技能带入神经疾病的小鼠模型中,并培养尖端的神经生理学和光遗传学技术,作为理解和破坏神经活动异常模式的手段。该提案所涉及的指导将为我提供科学和专业资源,以继续我作为一名研究人员的发展,使我能够提交竞争性资助申请并在未来领导我自己的实验室。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aberrant Striatal Activity in Parkinsonism and Levodopa-Induced Dyskinesia.
- DOI:10.1016/j.celrep.2018.05.059
- 发表时间:2018-06-19
- 期刊:
- 影响因子:8.8
- 作者:Ryan MB;Bair-Marshall C;Nelson AB
- 通讯作者:Nelson AB
Probing striatal microcircuitry to understand the functional role of cholinergic interneurons.
- DOI:10.1002/mds.26340
- 发表时间:2015-09
- 期刊:
- 影响因子:0
- 作者:Girasole AE;Nelson AB
- 通讯作者:Nelson AB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Nelson其他文献
Alexandra Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Nelson', 18)}}的其他基金
Striatal Microcircuit Mechanisms of Tardive Dyskinesia
迟发性运动障碍的纹状体微电路机制
- 批准号:
10634474 - 财政年份:2023
- 资助金额:
$ 17.15万 - 项目类别:
Striatal Mechanisms of Levodopa-Induced Dyskinesia
左旋多巴引起的运动障碍的纹状体机制
- 批准号:
9975924 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Striatal Mechanisms of Levodopa-Induced Dyskinesia
左旋多巴引起的运动障碍的纹状体机制
- 批准号:
10161518 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Striatal Mechanisms of Levodopa-Induced Dyskinesia
左旋多巴引起的运动障碍的纹状体机制
- 批准号:
10408107 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Striatal Mechanisms of Levodopa-Induced Dyskinesia
左旋多巴引起的运动障碍的纹状体机制
- 批准号:
10181085 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Striatal Mechanisms of Dyskinesia and Impulse Control in Parkinson’s Disease
帕金森病运动障碍和冲动控制的纹状体机制
- 批准号:
10735816 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Optogenetic dissection of striatal circuits in a mouse model of human dystonia
人类肌张力障碍小鼠模型纹状体回路的光遗传学解剖
- 批准号:
8924030 - 财政年份:2014
- 资助金额:
$ 17.15万 - 项目类别:
Optogenetic dissection of striatal circuits in a mouse model of human dystonia
人类肌张力障碍小鼠模型纹状体回路的光遗传学解剖
- 批准号:
8535857 - 财政年份:2012
- 资助金额:
$ 17.15万 - 项目类别:
Optogenetic dissection of striatal circuits in a mouse model of human dystonia
人类肌张力障碍小鼠模型纹状体回路的光遗传学解剖
- 批准号:
8425906 - 财政年份:2012
- 资助金额:
$ 17.15万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 17.15万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 17.15万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 17.15万 - 项目类别: