Mechanisms of CLC Transporters and Channels
CLC转运蛋白和通道的机制
基本信息
- 批准号:9174309
- 负责人:
- 金额:$ 46.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAffectBindingBiochemicalCarrier ProteinsChloride ChannelsChloride IonChloridesChronicComputer AnalysisComputer SimulationConstipationCoupledCouplingCrystallizationCrystallographyDevelopmentDiseaseElectron Spin Resonance SpectroscopyElectronsElectrophysiology (science)ElementsEventFailureFamilyGene FamilyGoalsHomologous GeneHumanHypertensionHyponatremiaIon ChannelIon TransportIonsKidney DiseasesKineticsMeasurementMeasuresMedicalMembraneMembrane ProteinsMembrane Transport ProteinsMethodologyMethodsModelingMolecularMolecular ConformationMovementMuscleOrganismOsteoporosisPathway interactionsProcessProteinsProton PumpProtonsResolutionSideSiteSpin LabelsStructural ModelsStructureTechniquesTestingTherapeuticTissuesValidationVariantWaterWorkantiporterbiophysical techniquesboneinhibitor/antagonistinnovationinsightleukodystrophymolecular dynamicsmutantnervous system disorderpublic health relevancereconstitutionsimulationstoichiometrytool
项目摘要
The long-term goal of this project is to develop a detailed molecular understanding of the CLC ("Chloride
Channel") family of membrane proteins. The CLCs comprise two major classes of ion-transport mechanisms:
half of CLC homologs are electrodiffusive ion channels (catalyzing downhill movement of chloride), while the
other half are secondary active transporters that stoichiometrically exchange chloride for protons (harnessing
the energy from movement of chloride to pump protons or vice versa). That both types of ion-transport are
within one gene family suggests their mechanisms may be subtle variations on a single central theme.
Indeed, CLC channels appear to act by a "broken transporter" mechanism. Here we propose a highly
concerted approach composed of complementary computational and experimental biophysical and
biochemical techniques to study the molecular details underpinning the mechanism of CLC-ec1 and CLC-0,
model homologs for antiporters and channels, respectively. Our main goal is to elucidate the antiporter
("unbroken") mechanism, taking advantage of high-resolution CLC-ec1 structures and the molecular
dynamics simulations they allow, and of antiporter amenability to spectroscopic analysis. We will apply
insights from studies of the "unbroken" transporter CLC-ec1 to electrophysiological analysis of the CLC-0
channel's "broken" mechanism to study conservation between channel and transporter mechanisms. AIM 1
will determine global structural changes associated with the CLC transport cycle. Here we will use EPR to
measure distance changes between pairs of site-directed spin labels on CLC-ec1, evaluate changes in
accessibility of spin labels, and use computational modeling to develop structural models for the inward- and
outward-facing states. AIM 2 will determine how CLC conformational change affects water dynamics and
water-wire formation involved in proton transport. These studies will help reveal how proton transport fits into
the overall CLC transport mechanism. AIM 3 will characterize the chloride/proton coupling mechanism –
evaluating detailed models of how transport occurs, using a combination of kinetic and spectroscopic
measurements on WT and uncoupled mutants, together with computational analysis to investigate in detail
how binding and translocation of ions are coupled to protein conformational changes.
Overall Impact: Revealing molecular details of CLC ion channel "broken" and antiporter "unbroken"
mechanisms, and how they are alike and different, will help reveal how CLC function can go wrong, with
implications for neurological diseases, hypertension, and diseases of kidney, muscle, and bone. Our
methodology will be applicable to other large membrane proteins of medical importance where unraveling
molecular mechanisms has similarly been stymied by limitations of crystallography.
该项目的长期目标是对CLC建立详细的分子理解(“氯化物”
渠道”)膜蛋白家族。CLCs包括两个主要类别 - 传输机制:
一半的CLC同源物是电缩合离子通道(催化氯化物的下坡运动),而
另一半是二级活性转运蛋白,可将氯化物化为质子(施加氯化物)
从氯化物到泵送质子的能量,反之亦然)。两种类型的离子传输都是
在一个基因家族中,他们的机制可能是单个中心主题的微妙变化。
实际上,CLC通道似乎是通过“破碎的转运蛋白”机制作用的。在这里,我们提出了一个高度的建议
协同的方法由互补的计算和实验生物物理和
研究分子细节的生化技术是CLC-EC1和CLC-0的机理的基础
分别为抗植物和通道建模。我们的主要目标是阐明抗客
(“不间断”)机制,利用高分辨率CLC-EC1结构和分子
他们允许的动力学模拟,以及抗流剂的合理性进行光谱分析。我们将申请
从“不间断”转运蛋白CLC-EC1的研究到CLC-0的电生理分析的见解
通道的“破裂”机制,用于研究通道和转运蛋白机制之间的保护。目标1
将确定与CLC运输周期相关的全球结构变化。在这里,我们将使用EPR
测量CLC-EC1上的位置定向自旋标签对之间的距离变化,评估
自旋标签的可访问性,并使用计算建模为内向和
向外的国家。 AIM 2将决定CLC构象变化如何影响水动力学和
质子运输涉及的水线形成。这些研究将有助于揭示质子运输如何适应
总体CLC运输机制。 AIM 3将表征氯化/质子耦合机制 -
使用动力学和光谱镜的组合评估运输方式的详细模型
对WT和未耦合突变体的测量以及计算分析以详细研究
离子的结合和易位如何与蛋白质构象变化耦合。
总体影响:揭示CLC离子通道的分子细节“破碎”和抗胞生物“不间断”
机制以及它们的相似之处和不同的方式,将有助于揭示CLC功能如何出错,并使用
对肾脏,肌肉和骨骼的神经系统疾病,高血压和疾病的影响。我们的
方法学将适用于其他重要重要性的大型膜蛋白
分子机制也被晶体学的局限性所困扰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Merritt C Maduke其他文献
Merritt C Maduke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Merritt C Maduke', 18)}}的其他基金
CLC-2 voltage-gated chloride channel structure and ligand recognition
CLC-2电压门控氯离子通道结构和配体识别
- 批准号:
10391191 - 财政年份:2021
- 资助金额:
$ 46.21万 - 项目类别:
Structure-based strategy for developing inhibitors of the kidney chloride channel CLC-Ka
基于结构的策略开发肾氯通道抑制剂 CLC-Ka
- 批准号:
10670342 - 财政年份:2021
- 资助金额:
$ 46.21万 - 项目类别:
Structure-based strategy for developing inhibitors of the kidney chloride channel CLC-Ka
基于结构的策略开发肾氯通道抑制剂 CLC-Ka
- 批准号:
10391185 - 财政年份:2021
- 资助金额:
$ 46.21万 - 项目类别:
Structure-based strategy for developing inhibitors of the kidney chloride channel CLC-Ka
基于结构的策略开发肾氯通道抑制剂 CLC-Ka
- 批准号:
10491286 - 财政年份:2021
- 资助金额:
$ 46.21万 - 项目类别:
相似国自然基金
Tva受体结合K亚群禽白血病病毒gp85影响病毒易感宿主范围的分子机制
- 批准号:32302908
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
改性水泥基材料氯离子结合稳定性及其对钢筋锈蚀萌生的影响机制研究
- 批准号:52378276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
鸡DEC 205结合肽的鉴定及其影响黏膜递送效率的研究
- 批准号:32302909
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
ALK融合伴侣结合蛋白通过空间位阻效应影响ALKoma异质性的分子机制
- 批准号:82303945
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
喀斯特森林林隙对土壤矿物结合有机碳积累与稳定的影响机制
- 批准号:32360385
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Emergence of TonB-dependent receptor mediated cefiderocol resistance among multidrug-resistant (MDR) Pseudomonas aeruginosa clinical isolates.
多重耐药 (MDR) 铜绿假单胞菌临床分离株中 TonB 依赖性受体介导的头孢地罗耐药性的出现。
- 批准号:
10646641 - 财政年份:2023
- 资助金额:
$ 46.21万 - 项目类别:
Modulation of nuclear pore complex structure and function by nuclear envelope tension
核膜张力调节核孔复杂结构和功能
- 批准号:
10388820 - 财政年份:2022
- 资助金额:
$ 46.21万 - 项目类别:
Gluten peptide presentation in celiac disease: investigating the role of transglutaminase 2 using novel chemical probes
乳糜泻中的麸质肽呈递:使用新型化学探针研究转谷氨酰胺酶 2 的作用
- 批准号:
10671485 - 财政年份:2022
- 资助金额:
$ 46.21万 - 项目类别:
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10794575 - 财政年份:2022
- 资助金额:
$ 46.21万 - 项目类别:
Human Monoclonal Antibodies for Encephalitic Alphaviruses
脑炎甲病毒的人单克隆抗体
- 批准号:
10539155 - 财政年份:2022
- 资助金额:
$ 46.21万 - 项目类别: