Astrocyte regulation of intraspinal plasticity and spontaneous recovery after SCI
星形胶质细胞对脊髓损伤后椎管内可塑性和自发恢复的调节
基本信息
- 批准号:9123306
- 负责人:
- 金额:$ 5.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAstrocytesAttenuatedAxonBiochemicalBrainBypassCicatrixClinical ResearchCommunicationCoupledDataDevelopmentElectromyographyExhibitsExtracellular MatrixFiberGene ExpressionGenesHindlimbInflammationInjuryLesionLocomotor RecoveryMammalsMolecularMotorMultiple SclerosisMusNatural regenerationNervous System PhysiologyNeuraxisNeurodegenerative DisordersNeurologicNeurologic DysfunctionsNeuronsPathway interactionsPatientsPhasePlayProcessRNARecoveryRegulationResearchResearch ProposalsRodentRoleSignal PathwaySignal TransductionSpinalSpinal CordSpinal InjuriesSpinal cord injurySpinal cord injury patientsStat3 proteinStrokeStructureSynapsesSynaptic plasticityTBI PatientsTestingTherapeuticTimeTissuesUrinationWalkingastrogliosisaxon guidancecentral nervous system injurydaily functioningdisabilityexperiencegenetic manipulationgraspimproved outcomein vivoinjuredinsightknock-downloss of functionmotor recoverymouse modelneural circuitneuroprotectionnew therapeutic targetnonhuman primatepreventpublic health relevanceregenerativerelating to nervous systemresearch studyresponsesynaptogenesistherapeutic developmenttherapy developmenttranscriptomics
项目摘要
DESCRIPTION (provided by applicant): Spinal cord injury (SCI) is a devastating neurologic insult that can disrupt ascending and descending neural circuits necessary for walking, somatosensation, urination and other vital autonomic functions. The majority of SCI patients suffer from anatomically and functionally incomplete spinal cord injury (I-SCI) that results in varying degrees of neurological dysfunction. Although long-distance regeneration of central nervous system (CNS) axons does not occur in mammals, clinical and experimental studies demonstrate considerable spontaneous recovery of neurological function after I-SCI. Experimental studies in rodents and non-human primates indicate that synaptic reorganization between supraspinal motor tracts and spared intraspinal relay circuits that bypass a spinal lesion can re-establish brain-cord communication, and give rise to remarkable motor recovery after I-SCI. Corresponding relay circuit formation may also play a role in motor recovery in hemipalegic stroke patients. Unfortunately, a limited understanding of the cellular and molecular mechanisms governing this functionally meaningful intraspinal circuit plasticity has precluded development of therapeutics to augment this spontaneously occurring recovery process. Astrocytes are critical regulators of synaptogenesis and circuit development during development, and moderate synaptic strength and structural synaptic plasticity following changes in neural activity. In response to diverse CNS injuries, astrocytes undergo graded and regionally distinct changes in structure and function collectively referred to as reactive astrogliosis. After SCI, scar-forming, reactive astrocytes surrounding lesions are indispensible regulators of inflammation. The functions of non-scar-forming, reactive perineuronal astrocytes in spinal cord regions undergoing functionally meaningful circuit remodeling after SCI are not clear, but potential roles include regulation of synapse recovery and neuroprotection. The objective of the current study is to delineate fundamental molecular mechanisms through which astrocytes modulate intraspinal synaptic reorganization and spontaneous locomotor recovery after SCI. In Aim 1, I will use an in vivo, astrocyte-specific transcriptomics approach to delineat key changes in perineuronal astrocyte gene expression that underlie spontaneous locomotor recovery in a mouse model of I-SCI. In Aim 2, I will use neuroanatomical tract tracing, electromyography and in vivo astrocyte-specific genetic manipulations to assess the functional relevance of perineuronal astrocyte reactivity for supraspinal- intraspinal synaptic remodeling and locomotor recovery after I-SCI. Together, these studies will serve as a critical first step towards identifying astrocyte molecular pathways that may be therapeutically targeted to enhance functionally relevant plasticity and promote recovery of neurological function after I-SCI. Such findings are also relevant to patients with traumatic brain injury, stroke or neurodegenerative disease such as multiple sclerosis, in which therapeutically harnessing synaptic plasticity of neural circuitry in spared tissue may be a key to promoting recovery of neurological function.
描述(由应用提供):脊髓损伤(SCI)是一种破坏性神经损伤,可以破坏行走,体感应,排尿和其他重要自主功能所需的上升和下降的神经元回路。大多数SCI患者在解剖学和功能上不完整的脊髓损伤(I-SCI)遭受不同程度的神经功能障碍。尽管中枢神经系统(CNS)轴突的长距离再生并未发生在哺乳动物中,但临床和实验研究表明,在I-SCI之后,考虑了赞助者的恢复。对啮齿动物和非人类私人的实验研究表明,绕过脊柱病变的脊柱上运动区和宽松的脊柱内中继电路之间的突触重组可以重新建立脑饰通信,并在I-SCI后引起显着的运动恢复。相应的继电器电路形成也可能在半脂肪中风患者的运动恢复中起作用。不幸的是,对控制这种功能有意义的脊柱内回路可塑性的细胞和分子机制的有限理解已被排除在疗法中的发展,从而增强了这种赞助发生的恢复过程。星形胶质细胞是发育过程中突触发生和回路发育的关键调节因子,神经活动变化后,中等的合成强度和结构合成可塑性。为了应对潜水中枢神经系统的损伤,在渐变和区域的结构和功能下,星形胶质细胞共同称为反应性星形胶质细胞增多症。 SCI后,围绕病变的疤痕形成,反应性星形胶质细胞是不可或缺的炎症调节剂。 SCI后有意义的有意义的电路重塑的脊髓区域中非尺寸形成的反应性周神经元星形胶质细胞的功能尚不清楚,但潜在的作用包括调节突触恢复和神经保护作用。当前研究的目的是描述星形胶质细胞调节脊柱内突触重组的基本分子机制,而SCI后的主导运动恢复。在AIM 1中,我将使用体内星形胶质细胞特异性转录组学方法来划定会周神经元星形胶质细胞基因表达的关键变化,这些变化是I-SCI小鼠模型中赞助运动恢复的基础。在AIM 2中,我将使用神经解剖学追踪,肌电图和体内星形胶质细胞特异性遗传操作来评估周期神经胶质细胞反应性的功能相关性,以在I-SCI后恢复中脊柱上神经胶质细胞反应性。总之,这些研究将是鉴定星形胶质细胞分子途径的关键第一步,这些途径可能是热靶向以增强功能相关的可塑性并促进I-SCI后神经系统功能恢复的关键第一步。此类发现也与脑损伤,中风或神经退行性疾病(例如多发性硬化症)患者有关,其中在保存组织中利用神经系统循环的突触可塑性可能是促进神经系统功能恢复的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Evan Burda其他文献
Joshua Evan Burda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Evan Burda', 18)}}的其他基金
Interrogating a white matter degeneration-specific astrocyte reactivity state and its role in governing repair-associated microglia specification and function.
询问白质变性特异性星形胶质细胞反应状态及其在控制修复相关小胶质细胞规格和功能中的作用。
- 批准号:
10660874 - 财政年份:2023
- 资助金额:
$ 5.8万 - 项目类别:
Astrocyte regulation of neural plasticity after CNS injury
星形胶质细胞对中枢神经系统损伤后神经可塑性的调节
- 批准号:
10004175 - 财政年份:2018
- 资助金额:
$ 5.8万 - 项目类别:
相似国自然基金
JAK/STAT3调控星形胶质细胞表型在急性缺血性脑小血管病白质损伤中的作用和机制
- 批准号:82301661
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑腹后外侧核中星形胶质细胞来源紧张性抑制电流在神经病理性疼痛中的作用及机制研究
- 批准号:82360235
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
轴突CD82调控星形胶质细胞TGF-β2/Smads信号通路改善青光眼视盘结构重塑的作用及机制探究
- 批准号:82301200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NLRP3炎性小体介导星形胶质细胞与内皮细胞crosstalk在OSA认知损伤中的作用及机制研究
- 批准号:82371129
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 5.8万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 5.8万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 5.8万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 5.8万 - 项目类别: