Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
基本信息
- 批准号:10237267
- 负责人:
- 金额:$ 49.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAddressAdultAffectAllelesAnimal ModelAntisense OligonucleotidesBindingBiological MarkersC9ORF72CRISPR/Cas technologyCUG repeatCoupledCyclin-Dependent KinasesDNA Polymerase IIDNA-Directed RNA PolymeraseDefectDevelopmentDiseaseDrug ApprovalEventExerciseExonsExperimental ModelsFamilyFragile X SyndromeGenerationsGenesGenetic TranscriptionGenomeGoalsHealthHereditary DiseaseHexosesHistopathologyHumanIn VitroInsulinKnock-inKnock-in MouseLengthLigandsLinkMediatingMessenger RNAMethodsMicroRNAsMicrosatellite RepeatsModelingModificationMolecularMusMuscleMuscular DystrophiesMutationMyocardiumMyotoniaMyotonic DystrophyMyotonic dystrophy type 1Neuromuscular DiseasesOutcome MeasurePathogenesisPathogenicityPathway interactionsPatient observationPatientsPharmaceutical PreparationsPharmacodynamicsPhosphotransferasesPre-Clinical ModelProgram DevelopmentProteinsRNARNA ProcessingRNA SplicingRNA-Binding ProteinsRecovery of FunctionRegulationResearchResidual stateSafetySeriesSkeletal MuscleSmooth MuscleTestingTherapeuticTherapeutic InterventionToxic effectTranscription ElongationTranslationsTremor/Ataxia SyndromeUntranslated RNAanalogbasebiomarker developmentcombinatorialdesigndrug developmenteffective therapyfrontotemporal lobar dementia-amyotrophic lateral sclerosisfunctional disabilityimprovedin vivoinhibitor/antagonistknock-downloss of functionmRNA Precursormouse modelmuscular structuremutantnovelpreclinical studyrepairedsmall moleculetargeted treatmenttherapeutic developmenttherapeutic targettherapeutically effectivetherapy developmenttooltranscriptometranscriptome sequencingtreatment response
项目摘要
Myotonic dystrophy type 1 (DM1), which is caused by CTG expansions (CTGexp) in the 3' untranslated region
of the DMPK gene, has been used as a model for RNA-mediated disease mechanisms associated with other
microsatellite expansion diseases, including fragile X tremor/ataxia syndrome (FXTAS) and C9orf72
amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). In DM1, transcription of the
CTGexp mutation results in CUGexp RNAs that alter the developmental regulation of pre-mRNA processing
and mRNA localization events mediated by the MBNL and CELF families of RNA binding proteins. However,
additional cellular pathways, such as miRNA processing and repeat-associated non-AUG translation, have also
been implicated in DM1 pathogenesis. Most importantly, no effective therapies exist to treat this
neuromuscular disease. To address these deficiencies, this project is designed to generate more informative
mouse experimental models for DM1 to elucidate the relative contribution of each of the proposed
pathomechanisms and qualify RNA splicing defects as responsive biomarkers of therapeutic response with the
goal of developing effective therapeutic approaches to decrease the toxic burden of CUGexp RNAs. Aim 1 builds
upon our recent development of Dmpk CTGexp knockin mice generated using a combination of rolling circle
amplification to generate large repeats in vitro and CRISPR/Cas9-mediated genome modification. Using an
allelic series of increasing CTG repeat lengths that represent the late-onset to congenital spectrum of the DM1
pathogenic range, we will determine CTG length-dependent effects on skleletal and heart muscle
structure/function, RNA processing/localization/turnover and RAN translation. Transcriptome analysis will be
pursued further in Aim 2, which is based upon our prior observations that patient functional impairment
corresponds to RNA splicing defects and MBNL loss of function, to determine if splicing defects qualify as
effective biomarkers that are responsive to CUGexp levels, MBNL activity and therapeutic intervention. In Aim
3, we will broaden this therapeutic scope and evaluate multiple strategies, including antisense oligonucleotide
(ASO)-mediated CUGexp knockdown and small molecule approaches to inhibit transcription of mutant Dmpk
CTGexp genes. The overall objective of this project is to provide the DM field with more robust mouse models
of DM1 while also evaluating splicing defects as biomarkers of disease status and developing single small
molecule strategies
强直性肌营养不良 1 型 (DM1),由 3' 非翻译区的 CTG 扩张 (CTGexp) 引起
DMPK 基因的 DMPK 基因已被用作与其他疾病相关的 RNA 介导的疾病机制的模型
微卫星扩张疾病,包括脆性 X 震颤/共济失调综合征 (FXTAS) 和 C9orf72
肌萎缩侧索硬化症和额颞叶痴呆 (C9-ALS/FTD)。在 DM1 中,转录
CTGexp 突变导致 CUGexp RNA 改变前 mRNA 加工的发育调节
以及由 RNA 结合蛋白的 MBNL 和 CELF 家族介导的 mRNA 定位事件。然而,
其他细胞途径,例如 miRNA 加工和重复相关的非 AUG 翻译,也已
与 DM1 发病机制有关。最重要的是,目前还没有有效的疗法来治疗这种情况
神经肌肉疾病。为了解决这些缺陷,该项目旨在生成更多信息
DM1 的小鼠实验模型,以阐明每个提议的相对贡献
病理机制并将 RNA 剪接缺陷鉴定为治疗反应的反应性生物标志物
开发有效的治疗方法以减少 CUGexp RNA 的毒性负担的目标。目标 1 构建
我们最近开发了使用滚环组合产生的 Dmpk CTGexp 敲入小鼠
体外扩增以产生大量重复序列以及 CRISPR/Cas9 介导的基因组修饰。使用
CTG 重复长度增加的等位基因系列,代表 DM1 的晚发型到先天性谱系
致病范围,我们将确定 CTG 长度依赖性对骨骼和心肌的影响
结构/功能、RNA 加工/定位/周转和 RAN 翻译。转录组分析将
在目标 2 中进一步追求,这是基于我们之前的观察,即患者功能障碍
对应于 RNA 剪接缺陷和 MBNL 功能丧失,以确定剪接缺陷是否符合
对 CUGexp 水平、MBNL 活性和治疗干预有反应的有效生物标志物。瞄准
3、我们将扩大这种治疗范围并评估多种策略,包括反义寡核苷酸
(ASO) 介导的 CUGexp 敲低和小分子方法抑制突变 Dmpk 的转录
CTGexp 基因。该项目的总体目标是为DM领域提供更强大的小鼠模型
DM1 的同时还评估剪接缺陷作为疾病状态的生物标志物并开发单个小
分子策略
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAURICE SCOTT SWANSON其他文献
MAURICE SCOTT SWANSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAURICE SCOTT SWANSON', 18)}}的其他基金
Therapeutic strategies for microsatellite expansion diseases using RNA targeting
利用 RNA 靶向治疗微卫星扩增疾病的策略
- 批准号:
10588064 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
Therapeutic strategies for microsatellite expansion diseases using RNA-targeting CRISPR/Cas
使用 RNA 靶向 CRISPR/Cas 治疗微卫星扩增疾病的策略
- 批准号:
10171924 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
8739678 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
8609101 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
MECHANISMS OF RNA-MEDIATED CNS PATHOGENESIS IN MYOTONIC DYSTOPHY
RNA介导的强直性肌营养不良中枢神经系统发病机制
- 批准号:
9105456 - 财政年份:2008
- 资助金额:
$ 49.21万 - 项目类别:
Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
- 批准号:
10021453 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
Preclinical models, biomarkers, and therapy for myotonic dystrophy type 1
1 型强直性肌营养不良的临床前模型、生物标志物和治疗
- 批准号:
10480097 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
MOUSE MUSCLEBLIND MODEL FOR MYOTONIC DYSTROPHY
强直性肌营养不良小鼠肌盲模型
- 批准号:
6824697 - 财政年份:2003
- 资助金额:
$ 49.21万 - 项目类别:
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Restriction of KSHV by cellular RNA decay pathways
细胞 RNA 衰变途径对 KSHV 的限制
- 批准号:
10699800 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
HMGA2 mediates resistance to therapy in prostate cancer
HMGA2 介导前列腺癌治疗耐药
- 批准号:
10622747 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
The Role of mRNA Degradation in Embryonic Cell Fate Specification
mRNA 降解在胚胎细胞命运规范中的作用
- 批准号:
10604512 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别: