ROS-targeted therapy for pancreatic cancer
ROS靶向治疗胰腺癌
基本信息
- 批准号:9102041
- 负责人:
- 金额:$ 46.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbraxaneAcute Myelocytic LeukemiaAdenocarcinoma CellAffectAntioxidantsApoptosisBiodistributionCaspaseCell DeathCell LineCell RespirationCellsCharacteristicsClinicalDNA DamageDrug resistanceEngineeringEpithelialEquilibriumFibroblastsGenerationsGenesGenetic TranscriptionGenetically Engineered MouseHealthHumanKRAS2 geneLaboratoriesLeadLibrariesMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMetabolicMetabolismMitochondriaModelingMusMutateNecrosisNormal CellOncogenicOxidation-ReductionOxidative StressOxygen ConsumptionPancreasPancreatic Ductal AdenocarcinomaPathway interactionsPatientsPhosphorylationPlayPopulationProductionProto-Oncogene Proteins c-aktRadiation therapyReactive Oxygen SpeciesResearch PersonnelResveratrolRoleSafetySeriesSignal TransductionStem cellsTechnologyTestingTherapeutic InterventionToxic effectTransgenic MiceXenograft Modelanalogcancer cellcancer stem cellcancer therapychemotherapydesignextracellulargemcitabinein vivoinnovationmouse modelnanomolarneoplastic cellnext generation sequencingnovelnovel therapeutic interventionparthenolideself-renewalsenescencestemtargeted treatmenttranscription factortumor
项目摘要
DESCRIPTION (provided by applicant): Cancer cells are under persistent oxidative stress. Oncogenic transformation such as with Kras, and metabolic alterations result in increased oxidative stress in tumor cells. Tumor cells adapt to persistent oxidative stress by activating redox sensitive transcription factors that increase the expression of endogenous antioxidants, promote survival pathways, induce chemoresistance, and reduce caspase activation. More significantly, ROS also plays an important role in the survival of cancer stem cells. A subset population of cancer stem cells contains lower ROS levels, thus providing protection against DNA damage such as radiotherapy. Moreover, the self-renewal capacity of cancer stem cells is sensitive to cellular ROS levels. Both bulk tumor and cancer stem cells are vulnerable to excess levels of ROS and this characteristic can be exploited for therapy. Our overarching hypothesis is that compounds able to effectively increase the levels of ROS in cancer cells will tip the balance towards cell death and can potentially overcome drug resistance. Recently, we screened a library of highly diverse compounds on an Extracellular Flux Analyzer that measures cellular respiration. Among hundreds of compounds screened, we identified DFC232, a compound that caused a maximum oxygen consumption rate (OCR) in Mia PaCa-2 cells. DFC232 induced rapid onset of ROS production and activation of AKT, followed by a substantial increase in the phosphorylation of the transcription factor FOXO3a, culminating in cell death. DFC232 shows single agent activity in a Mia PaCa-2 xenograft model with no signs of toxicity. In subsequent mechanistic studies, using a novel next-generation sequencing technology (Bru-Seq), we observed that DFC232 produced a remarkable inactivation of mitochondrial gene transcription by potentially affecting the D-loop. Our first round of ADMET-guided lead optimization campaign generated compounds (e.g. DFC325) with nanomolar potency in a panel of PDAC cell lines and remarkable single agent efficacy in mice. Our central hypothesis is that DFC232 and analogs induce ROS production, tipping the balance toward apoptosis. We further hypothesize that DFCs act through a novel mechanism by effectively disrupting transcription from the mitochondrial D-loop. Moreover, DFC analogs are novel agents with unique targets and have biodistribution, safety, and efficacy characteristics necessary for potential clinical benefit in PDAC treatment. To test our hypothesis we will focus on the following specific aims: Aim 1: To perform ADMET, metabolic, and PK-guided synthesis of novel analogs to enhance potency and efficacy. Aim 2: To perform mechanistic studies of top 5 compounds as single agent and in combination with gemcitabine and abraxane using Bru-Seq technology. Aim 3: To determine the in vivo efficacy of top 5 compounds as single agents and in combination with gem/abraxane in orthotopic and genetically engineered mouse models (GEMM) of KRAS driven pancreatic cancer.
描述(适用提供):癌细胞处于持续的氧化应激之下。致癌性转化(例如KRAS)和代谢改变导致肿瘤细胞中氧化应激的增加。肿瘤细胞通过激活氧化还原敏感的转录因子来适应持续的氧化应激,从而增加内源性抗氧化剂的表达,促进生存途径,诱导化学耐药性并减少caspase激活。更重要的是,ROS在癌症干细胞的存活中也起着重要作用。癌症干细胞的子集群体含有较低的ROS水平,从而提供了防止DNA损伤(例如放疗)的保护。此外,癌症干细胞的自我更新能力对细胞ROS水平敏感。散装肿瘤和癌症干细胞都容易受到过量水平的影响,并且可以探索该特征进行治疗。我们的总体假设是,化合物可以有效地增加癌细胞中ROS的水平,将平衡倾向于细胞死亡,并有可能克服耐药性。最近,我们在测量细胞呼吸的细胞外通量分析仪上筛选了高度潜水化合物的库。在筛选的数百种化合物中,我们确定了DFC232,这是一种在MIA PACA-2细胞中导致最大氧气消耗率(OCR)的化合物。 DFC232诱导ROS产生和AKT的激活迅速发作,然后转录因子FOXO3A的磷酸化次要增加,最终导致细胞死亡。 DFC232显示了MIA PACA-2特种图模型中的单一试剂活性,没有毒性迹象。在随后的机械研究中,使用新型的下一代测序技术(BRU-SEQ),我们观察到DFC232通过潜在地影响D-LOOP而导致了线粒体基因转录的显着失活。我们的第一轮ADMET引导的铅优化运动生成的化合物(例如DFC325)在PDAC细胞系中具有纳摩尔效力,并且在小鼠中产生了显着的单药有效性。我们的中心假设是DFC232和类似物会诱导ROS产生,使平衡降低了凋亡。我们进一步假设DFC通过有效破坏线粒体D环的转录来通过一种新的机制起作用。此外,DFC类似物是具有独特靶标的新型药物,具有生物分布,安全性和有效性特征,这对于PDAC治疗中潜在的临床益处所必需。为了检验我们的假设,我们将重点关注以下特定目的:目标1:执行新型类似物的ADMET,代谢和PK引导的合成,以提高效力和效率。 AIM 2:使用BRU-SEQ技术对Top 5种化合物进行机械研究,并与Gemcitabine和Abraxane结合使用。 AIM 3:确定Top 5种化合物的体内效率,并与KRAS驱动胰腺癌的原位和一般工程的小鼠模型(GEMM)中的宝石/阿布沙烷结合使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOURI NEAMATI其他文献
NOURI NEAMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOURI NEAMATI', 18)}}的其他基金
Preclinical Development of First-in-Class NDUFS7 Antagonists for the Treatment of Pancreatic Cancer
用于治疗胰腺癌的一流 NDUFS7 拮抗剂的临床前开发
- 批准号:
10684845 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
Preclinical Development of First-in-Class GSTO1 Degraders for Colorectal Cancer
首创的结直肠癌 GSTO1 降解剂的临床前开发
- 批准号:
10675586 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
8797755 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
8994723 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
9903250 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
High Throughput Screen for Myotonic Dystrophy Type 1
1 型强直性肌营养不良的高通量筛查
- 批准号:
8209483 - 财政年份:2011
- 资助金额:
$ 46.1万 - 项目类别:
Inhibition of HIV-1 Integrase-LEDGF/P75 Interactions
HIV-1 整合酶-LEDGF/P75 相互作用的抑制
- 批准号:
7897668 - 财政年份:2009
- 资助金额:
$ 46.1万 - 项目类别:
相似海外基金
University of Pennsylvania Patient-derived Xenograft Development and Trials Center
宾夕法尼亚大学患者来源的异种移植开发和试验中心
- 批准号:
10733231 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
The role of DPF2 stability in SMARCB1-deficient cancers
DPF2 稳定性在 SMARCB1 缺陷型癌症中的作用
- 批准号:
10751414 - 财政年份:2023
- 资助金额:
$ 46.1万 - 项目类别:
Discovery of First-in-class WDR5 PROTACs as a Novel Therapeutic Strategy for MLL-rearranged Leukemias
发现一流的 WDR5 PROTAC 作为 MLL 重排白血病的新型治疗策略
- 批准号:
10712396 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
Mechanism-based targeting of unique survival signaling in residual tumors
基于机制的残留肿瘤中独特生存信号的靶向
- 批准号:
10442812 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
Mechanism-based targeting of unique survival signaling in residual tumors
基于机制的残留肿瘤中独特生存信号的靶向
- 批准号:
10595654 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别: