Targeting DXP synthase in bacterial metabolism
靶向细菌代谢中的 DXP 合酶
基本信息
- 批准号:10576858
- 负责人:
- 金额:$ 57.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnti-Bacterial AgentsAntibioticsAntimicrobial ResistanceBacteriaCell physiologyClinicalCombined Modality TherapyDevelopmentDiphosphatesDrug KineticsDrug TargetingDrug resistanceEnvironmentEnzymatic BiochemistryEnzymesGoalsGrowthHumanImmune responseInfectionLearningMetabolicMetabolic PathwayMetabolismModelingMusNutrientNutritionalOutcomePathogenicityPathway interactionsPermeabilityPositioning AttributePredispositionPrevalenceProdrugsPublic HealthPyridoxal PhosphateReactionResearchResistanceRoleSerineStressStructureTestingThiamineUrinary tractUrinary tract infectionUropathogenVitaminsWorkanalogantibiotic resistant infectionsantimicrobialascending urinary tract infectionbacterial metabolismcombatdesignefficacy evaluationefficacy studyefficacy testingfeedingin vivoinhibitorinorganic phosphateisoprenoidmutantpathogenpathogenic bacteriapreventpriority pathogensynergismtargeted agenttargeted treatmentuptakexylulose-5-phosphate
项目摘要
There is an urgent need to develop new antimicrobial strategies to combat the increasing occurrence of drug resistance in clinical pathogens. Current antibiotics act on a limited set of cellular processes, and the rate of new inhibitor discovery is rapidly declining. With the diminishing arsenal of useful antibiotics, other essential cellular processes must be explored as antibacterial targets. During infection, bacterial pathogens rapidly respond to changes in the host microenvironment by remodeling metabolism to promote growth. These “metabolic adaptations” are crucial for pathogen survival and pathogenicity in vivo and are thus a promising target space for antibiotic development. Positioned at a metabolic branch point to supply essential vitamins and isoprenoids, 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) is poised to be a key player in bacterial metabolic adaptation during infection, thus it is a potential target. We have uncovered several unique features of DXPS structure and mechanism that have guided the development of selective inhibitors that exert antibacterial activity by a mechanism involving DXPS inhibition. Our research will test the hypothesis that inhibition of DXPS will severely hinder pathogen metabolic adaptation in the host and take the next steps to develop antibacterial strategies targeting DXPS in clinical pathogens.
迫切需要开发新的抗菌策略来对抗临床病原体中日益增加的耐药性,目前的抗生素作用于有限的细胞过程,并且随着有用的抗生素库的减少,新抑制剂的发现率正在迅速下降。在感染过程中,细菌病原体通过重塑新陈代谢以促进生长来快速响应宿主微环境的变化,这些“代谢适应”对于病原体的生存和致病性至关重要。 1-脱氧-D-木酮糖 5-磷酸合酶 (DXPS) 位于提供必需维生素和类异戊二烯的代谢分支点,因此是抗生素开发的一个有前景的目标空间,有望成为细菌代谢的关键参与者。因此,我们发现了 DXPS 结构和机制的几个独特特征,这些特征指导了通过涉及 DXPS 抑制的机制发挥抗菌活性的选择性抑制剂的开发。将测试抑制 DXPS 将严重阻碍宿主病原体代谢适应的假设,并采取下一步措施开发针对临床病原体中 DXPS 的抗菌策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caren L. Freel Meyers其他文献
Synthesis and biological activity of novel 5-fluoro-2'-deoxyuridine phosphoramidate prodrugs.
- DOI:
10.1021/jm000301j - 发表时间:
2000-10-10 - 期刊:
- 影响因子:7.3
- 作者:
Caren L. Freel Meyers;Liping Hong;Liping Hong;Carolyn Joswig;Carolyn Joswig;R. Borch;R. Borch - 通讯作者:
R. Borch
Caren L. Freel Meyers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caren L. Freel Meyers', 18)}}的其他基金
Targeting DXP synthase in bacterial metabolism
靶向细菌代谢中的 DXP 合酶
- 批准号:
10372207 - 财政年份:2021
- 资助金额:
$ 57.62万 - 项目类别:
Toward understanding the chemistry and biology of microbial DXP synthase
了解微生物 DXP 合酶的化学和生物学
- 批准号:
10317255 - 财政年份:2021
- 资助金额:
$ 57.62万 - 项目类别:
Toward understanding the chemistry and biology of microbial DXP synthase
了解微生物 DXP 合酶的化学和生物学
- 批准号:
10641824 - 财政年份:2021
- 资助金额:
$ 57.62万 - 项目类别:
Toward understanding the chemistry and biology of microbial DXP synthase
了解微生物 DXP 合酶的化学和生物学
- 批准号:
10470350 - 财政年份:2021
- 资助金额:
$ 57.62万 - 项目类别:
Pharmacology and Molecular Sciences Training Program
药理学和分子科学培训计划
- 批准号:
10385766 - 财政年份:2020
- 资助金额:
$ 57.62万 - 项目类别:
Pharmacology and Molecular Sciences Training Program: Enhancing Inclusivity Through Universal Design for Learning in Graduate Courses
药理学和分子科学培训计划:通过研究生课程学习的通用设计增强包容性
- 批准号:
10592034 - 财政年份:2020
- 资助金额:
$ 57.62万 - 项目类别:
Pharmacology and Molecular Sciences Training Program
药理学和分子科学培训计划
- 批准号:
10197160 - 财政年份:2020
- 资助金额:
$ 57.62万 - 项目类别:
Pharmacology and Molecular Sciences Training Program
药理学和分子科学培训计划
- 批准号:
10617205 - 财政年份:2020
- 资助金额:
$ 57.62万 - 项目类别:
相似国自然基金
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
- 批准号:22378166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醛固酮瘤丙酸代谢异常通过MMA-肥大细胞-5-羟色胺-PCCA环路促进醛固酮合成的机制研究
- 批准号:82300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Optimization of Atypical Antimycobacterial Carbapenem Antibiotics
非典型抗分枝杆菌碳青霉烯类抗生素的优化
- 批准号:
10736024 - 财政年份:2023
- 资助金额:
$ 57.62万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 57.62万 - 项目类别:
EPHEDRA: Enhanced PHthisic by Environmental Disruptors of Resolution Agonists
麻黄:通过消解激动剂的环境干扰剂增强肺结核
- 批准号:
10662073 - 财政年份:2022
- 资助金额:
$ 57.62万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10657805 - 财政年份:2022
- 资助金额:
$ 57.62万 - 项目类别:
EPHEDRA: Enhanced PHthisic by Environmental Disruptors of Resolution Agonists
麻黄:通过消解激动剂的环境干扰剂增强肺结核
- 批准号:
10662073 - 财政年份:2022
- 资助金额:
$ 57.62万 - 项目类别: