Novel statistical methods to localize genomic elements underlying adaptive evolution
定位适应性进化背后的基因组元素的新统计方法
基本信息
- 批准号:9078921
- 负责人:
- 金额:$ 32.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-06 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAfricaAfricanAlgorithmsAllelesAltitudeAnimal ModelBiologicalBiologyBiomedical ResearchChromosome MappingComplexComputer softwareComputing MethodologiesCritical PathwaysDataData SetDependencyDetectionDevelopmentDietDiseaseDisease PathwayEatingElementsEnvironmentEvolutionFaceFutureGene MutationGenesGeneticGenetic PolymorphismGenetic VariationGenomeGenomic SegmentGenomicsGoalsHealthHeightHemoglobinHumanHuman GeneticsHuman GenomeIndividualInsulinJointsKnowledgeLactaseLarge-Scale SequencingLettersLightMeasuresMethodsMissionModelingMolecular EvolutionMutationOrganismOutcomeOutputPathway interactionsPhenotypePopulationPopulation DynamicsPopulation ProcessProbabilityPublic HealthRecording of previous eventsRegulationReportingResearchResearch PersonnelRoleSamplingScanningShapesSiteStatistical MethodsTestingTimeUncertaintyUrsidae FamilyValidationVariantWorkexomefitnessgenetic variantgenome sequencinggenome-widegenomic datagenomic signatureinnovationinsightinterestmarkov modelmutation screeningnext generation sequencingnovelpathogenpressurepublic health relevancestatisticstooltraitwhole genome
项目摘要
DESCRIPTION (provided by applicant): Determining the genomic elements underlying adaptive evolution in a species is essential for connecting genetic variation to phenotypes and fitness, but current statistical methods overlook the confounding effect population histories have on the identification and localization of adaptive mutations. The field of genomics urgently needs methods that (i) model the complex interaction between various modes of selection and population histories; (ii) accurately identify and localize mutations, genes, and pathways underlying adaptive traits for further experimental validation; and (iii) efficiently analyze large
scale datasets. Without such methods, the role of adaptation in human molecular evolution cannot be determined. The long-term goal of the researchers is to develop state-of-the-art methods for the detailed inference of evolutionary parameters and disease pathways from next-generation sequencing datasets. The objective of this application is to characterize the genomic elements underlying adaptive evolution in the human genome, through the development and application of a suite of novel statistical and computational methods. The aims of the proposal are to: 1) identify adaptive mutations in diverse human populations using novel, probabilistically interpretable frameworks; 2) develop a frame-work for joint inference of selection and population history from whole-genome sequences; and 3) characterize gene subnetworks underlying human adaptive evolution by developing and applying new tests for polygenic adaption to human genomic data. The methods developed will be applicable to existing and emerging genome- wide polymorphism and next-generation sequencing datasets for humans and a range of other organisms. The contribution of the proposed research will be significant because it will shed light on the mutations that allowed human ancestors to survive in the face of novel environments, diets, and pathogens; humans will face similar environmental pressures in the future, and the proposed research will determine genetic pathways that are critical to human survival in a hostile world. The proposed research is innovative in many distinct ways. First, these new methods will be able to test for multiple modes of selection, moving beyond classifying sites as simply "neutral" or "adaptive". Second, the methods developed here will control for dependencies among statistics measuring selection, enabling new understanding of which combinations of genomic signatures are most informative for the detection of different modes of selection. Third, the proposed research will expand the focus of population-genomic studies of adaptation beyond monogenic adaptation to polygenic adaptation. The out- comes of this research will have an important positive impact: giving new insight into the interaction between selection and dynamic population histories in generating human genetic diversity, while determining how adaptation shapes the human phenotype and advancing our understanding of the biology of the human genome.
描述(由适用提供):确定物种自适应进化的基因组元素对于将遗传变异与表型和适应性联系起来至关重要,但是当前的统计方法忽略了种群历史对自适应突变的识别和定位的混杂影响。基因组学领域迫切需要(i)对各种选择模式与人口历史模式之间的复杂相互作用进行建模的方法; (ii)准确识别和定位自适应性状的突变,基因和途径,以进一步实验验证; (iii)有效分析大型
比例数据集。没有这种方法,无法确定适应性在人分子进化中的作用。研究人员的长期目标是开发最先进的方法,以详细推断下一代测序数据集的进化参数和疾病途径。该应用的目的是通过开发和应用一系列新型的统计和计算方法来表征人类基因组中自适应进化的基因组元素。该提案的目的是:1)使用新颖的(可能是可解释的框架)确定潜水员人群中的适应性突变; 2)开发一个框架工作,以从全基因组序列中联合推断选择和人群历史记录;和3)通过开发和应用新的测试以对人类基因组数据进行多基因适应的新测试来表征人类适应性进化的基因子网。开发的方法将适用于现有的和新兴的全基因组多态性以及针对人类和其他组织的下一代测序数据集。拟议的研究的贡献将是重要的,因为它将阐明使人类祖先在面对新颖的环境,饮食和病原体中生存的突变。人类将来会面临类似的环境压力,拟议的研究将确定对敌对世界中人类生存至关重要的遗传途径。研究以许多不同的方式具有创新性。首先,这些新方法将能够测试多种选择模式,而不是将站点分类为简单的“中性”或“自适应”。其次,此处开发的方法将控制统计量测量选择之间的依赖关系,从而使对哪些基因组特征组合的新理解最有用,以检测不同选择模式。第三,拟议的研究将扩大人口基因组研究的重点,而不是单基因适应多基因适应。这项研究的外部将产生重要的积极影响:在产生人类遗传多样性方面选择与动态人群历史之间的相互作用新见解,同时确定适应如何塑造人类表型并促进我们对人类基因组生物学的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sohini Ramachandran其他文献
Sohini Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sohini Ramachandran', 18)}}的其他基金
Novel population-genetic methods for localizing targets of natural selection in diverse human genomes
用于在不同人类基因组中定位自然选择目标的新群体遗传学方法
- 批准号:
10321900 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
Novel population-genetic methods for localizing targets of natural selection in diverse human genomes
用于在不同人类基因组中定位自然选择目标的新群体遗传学方法
- 批准号:
10538648 - 财政年份:2021
- 资助金额:
$ 32.37万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10405983 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10197955 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Predoctoral Training Program in Biological Data Science at Brown University
布朗大学生物数据科学博士前培训项目
- 批准号:
10447019 - 财政年份:2018
- 资助金额:
$ 32.37万 - 项目类别:
Novel statistical methods to localize genomic elements underlying adaptive evolution
定位适应性进化背后的基因组元素的新统计方法
- 批准号:
9926886 - 财政年份:2016
- 资助金额:
$ 32.37万 - 项目类别:
Project 1: Incorporating Ethnic and Gender Disparities in Genomic Studies of Disease
项目 1:将种族和性别差异纳入疾病基因组研究
- 批准号:
9433665 - 财政年份:
- 资助金额:
$ 32.37万 - 项目类别:
相似国自然基金
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒pS273R通过切割G3BP1调控宿主应激颗粒形成的机制
- 批准号:32302893
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非洲猪瘟病毒pS273R蛋白泛素-蛋白酶体降解途径阻抑机制理性设计其特异性蛋白水解靶向嵌合体的研究
- 批准号:32373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非洲猪瘟病毒B475L蛋白靶向LMP2抑制抗原递呈的分子机制
- 批准号:32302894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗体依赖性增强效应介导非洲猪瘟病毒致病的分子机制
- 批准号:32373024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Screening strategies for sexually transmitted infections in a high HIV incidence setting in South Africa
南非艾滋病毒高发地区的性传播感染筛查策略
- 批准号:
10761853 - 财政年份:2023
- 资助金额:
$ 32.37万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 32.37万 - 项目类别:
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
- 批准号:
10628505 - 财政年份:2023
- 资助金额:
$ 32.37万 - 项目类别:
Does treating low density malaria infections reduce malaria transmission?
治疗低密度疟疾感染是否可以减少疟疾传播?
- 批准号:
10574796 - 财政年份:2023
- 资助金额:
$ 32.37万 - 项目类别:
Conditional male lethal Anopheles stephensi line for the efficient manufacture of malaria vaccines
用于高效生产疟疾疫苗的条件性雄性致死史氏按蚊品系
- 批准号:
10602811 - 财政年份:2023
- 资助金额:
$ 32.37万 - 项目类别: