Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
基本信息
- 批准号:10561725
- 负责人:
- 金额:$ 56.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionBiological MarkersBiological ProcessBlood VesselsBrainCentral VeinChronicClinicClinicalClinical ResearchDataDetectionDevelopmentDiagnosisDiagnosticDiffuseDiseaseDisease ProgressionEtiologyFunctional disorderFutureGoalsHeterogeneityHistopathologyHornsImageImage AnalysisIndividualLesionLocationMagnetic Resonance ImagingMeasuresMethodsMicrogliaMonitorMorphologyMultimodal ImagingMultiple SclerosisMultiple Sclerosis LesionsMyelinNeurologistOutcomePathologyPatientsPatternPhasePhenotypePredispositionProcessResearchSequence AnalysisSeveritiesSignal TransductionStatistical Data InterpretationStatistical MethodsSystemT2 weighted imagingTechniquesTherapeuticTimeTissuesTranslatingTranslationsValidationVentricularVisitVisualWorkanalysis pipelineautomated analysisburden of illnessclinical decision-makingclinical practiceclinically relevantdensitydetection methoddiagnostic accuracydisabilityeducation resourcesgray matterillness lengthimaging biomarkerimaging studyimprovedindexingindividual patientinfancyischemic lesionmagnetic resonance imaging biomarkermultimodalitymultiparametric imagingneuroimagingneuropathologynovelolder patientprecision medicineradiologistradiomicsrepairedresearch studysoftware developmentstatisticsstemtargeted treatmenttissue injurytissue repairtoolwhite matter
项目摘要
PROJECT SUMMARY
Quantitative radiomic analysis of MS based on MRI, performed by extracting imaging correlates of MS
pathophysiology, has been recognized as critical for more accurate and earlier diagnostics, improved precision
in clinical decision-making, and more powerful outcomes in trials for targeted MS therapeutics. Unfortunately,
the application of these approaches in MS are still in their infancy and several challenges unique to MS remain
to be solved before radiomic analyses can be translated in clinical and research practice. A major challenge for
the diagnosis and monitoring of MS is to disentangle the heterogeneity of white matter lesions, both from an
etiologic perspective and in the degree of tissue injury. The presence of confluent clusters of lesions that are
comprised of multiple lesions, particularly around the ventricular horns, poses a key challenge for dissecting this
heterogeneity in lesions: while histopathology shows great phenotypic variability both within and between
lesions, most neuroimaging studies average metrics across lesion clusters losing the valuable information about
each individual lesion. In this proposal, we propose to use advanced statistical analysis of signal intensity from
multi-parametric imaging to distinguish individual lesions and more accurately phenotype them, and thus
facilitate much greater understanding of an individual patients burden of disease and easier application to clinical
practice and research studies.
We will also create tools that will facilitate the adoption of these techniques in the
clinic. We will validate these approaches by comparison to expert neuroradiologist assessments and determine
added value of these techniques.
We further propose to develop a state-of-the-art method for the discovery of
covariate effects in diffuse processes in the normal-appearing white matter and gray matter, which will facilitate
many potential studies of MS pathology and therapeutics. We will also develop software implementations and
educational resources to disseminate the methods developed.
项目概要
基于 MRI 的 MS 定量放射组学分析,通过提取 MS 的成像相关性进行
病理生理学,已被认为对于更准确、更早的诊断、提高精度至关重要
临床决策,以及靶向多发性硬化症治疗试验中更强有力的结果。很遗憾,
这些方法在 MS 中的应用仍处于起步阶段,并且 MS 特有的一些挑战仍然存在
在放射组学分析应用于临床和研究实践之前需要解决这个问题。一个重大挑战
MS 的诊断和监测的目的是从白质病变的异质性中解脱出来
病因学视角和组织损伤程度。存在融合的病变簇
由多个病变组成,特别是在心室角周围,对解剖该病变提出了关键挑战
病变的异质性:虽然组织病理学显示病变内部和病变之间存在很大的表型变异性
病变,大多数神经影像学研究平均指标跨病变簇丢失了有价值的信息
每个单独的病变。在本提案中,我们建议使用先进的信号强度统计分析
多参数成像可区分单个病变并更准确地对它们进行表型分析,从而
有助于更好地了解个体患者的疾病负担,并更容易应用于临床
实践和研究。
我们还将创建工具来促进这些技术的采用
诊所。我们将通过与神经放射学家专家的评估进行比较来验证这些方法,并确定
这些技术的附加值。
我们进一步建议开发一种最先进的方法来发现
正常出现的白质和灰质的弥散过程中的协变量效应,这将有助于
许多关于多发性硬化症病理学和治疗学的潜在研究。我们还将开发软件实施和
传播所制定的教育资源的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Takeshi Shinohara其他文献
Russell Takeshi Shinohara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Takeshi Shinohara', 18)}}的其他基金
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10188649 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10609841 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10385763 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10028642 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10337315 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8614974 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8738735 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8890255 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9320865 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9115248 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
相似国自然基金
基于生物标志物的“枯落物-土壤”表层界面有机碳转化过程研究
- 批准号:41807060
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
油藏环境石油烃厌氧生物降解产甲烷的生物化学过程研究
- 批准号:41530318
- 批准年份:2015
- 资助金额:295.0 万元
- 项目类别:重点项目
动脉粥样硬化发生发展过程中关键节点和调控网络的系统生物学研究
- 批准号:91439103
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
利用生物标志物和复合指纹分析法识别小流域泥沙来源
- 批准号:41301294
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
土壤污染微界面过程及其分子诊断与调控原理
- 批准号:21037002
- 批准年份:2010
- 资助金额:230.0 万元
- 项目类别:重点项目
相似海外基金
Improving response prediction to neoadjuvant therapy in pancreatic cancer
改善胰腺癌新辅助治疗的反应预测
- 批准号:
10784272 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Connecting Latinos en Pareja: A Couples-based HIV Prevention Intervention for Latino Male Couples
连接拉丁裔与帕雷哈:针对拉丁裔男性夫妇的基于夫妇的艾滋病毒预防干预措施
- 批准号:
10706860 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Vitamin D and Healthy Aging: Establishing the Sled Dog Sentinel for the Circumpolar North
维生素 D 与健康老龄化:为北极圈建立雪橇犬哨兵
- 批准号:
10649356 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
DS-ARC: A Remote Digital Cognitive Assessment for Down Syndrome-Associated Alzheimer's Disease
DS-ARC:针对唐氏综合症相关阿尔茨海默病的远程数字认知评估
- 批准号:
10638314 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别: