Molecular mechanisms of direct neuronal programming
直接神经元编程的分子机制
基本信息
- 批准号:9094285
- 负责人:
- 金额:$ 30.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAxonBindingBypassCell TherapyCellsCephalicCervicalChIP-seqChestChromatinClinicClinicalCommunicationComplementConsensusDataDevelopmentDiseaseEnvironmentEpigenetic ProcessFibroblast Growth FactorFutureGene ExpressionGeneric DrugsGenesGeneticGenomicsGoalsHealthHourImplantKnowledgeLumbar spinal cord structureMapsMedical ResearchMolecularMotor NeuronsMusMuscleNeuraxisNeuronsNucleic Acid Regulatory SequencesOrganPatientsPatternPopulationProtocols documentationSafetySignal TransductionSpeedSpinalSpinal CordSpinal cord injuryStagingTechnologyTestingTissuesTranslatingTransplantationUncertaintybasecell typeclinical applicationclinically relevantdesigndiagnostic panelembryonic stem cellextracellularhistone modificationimplantationimprovedin vivoinnovationinsightknock-downnerve supplynew technologynovel strategiesprogenitorprogramsstem cell differentiationstem cell technologystem cell therapysuccesstranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Embryonic stem cells (ESC) will revolutionize medical research and patient treatment. However, two major hurdles do not allow the rapid transition of ESC therapies to clinical settings: 1) the lack of protocols precluding homogenous cell populations that exactly reproduce those in vivo; 2) the uncertainty about the fate stability of ESC-derived cells after in vivo grafting. Overcoming these limitations will ameliorate safety concerns associated with ESC-derived cell therapies. Our long term goal is to efficiently generate ESC-derived cells that functionally integrate into organs. We have recently developed efficient protocols to derive terminal cell fates from ESC. When expressed in differentiating ESC, Ngn2- Isl1-Lhx3 (the NIL transcription factors) and Ngn2- Isl1-Phox2a (the NIP transcription factors) are sufficient to program spinal or cranial motor neuron identity respectively. This also happens extremely rapidly: Within 48 hours more than 97% of the cells acquire all the features of terminally differentiated motor neurons. Moreover, programmed neurons correctly integrate into the developing spinal cord projecting axons mirroring the endogenous neurons. Although, NIL and NIP factors do not provide the motor neuron subtype identity required for precise muscle innervation, our preliminary data suggests that it can be acquired by the activity of developmentally relevant signals. We hypothesize that NIL and NIP factors program "generic" motor neuron fate through a rapid transcriptional sequence, and that subtype identity can be independently imposed either by genetic factors or by the host environment after grafting. Here we propose 3 aims to test these ideas: Aim 1- To understand the molecular mechanisms of direct cell programming, we will map the NIL and NIP genetic and epigenetic requirements for efficient programming. This knowledge will facilitate the future design of programming strategies for different clinically relevant cell types. Aim 2- To increase the cellular precision of direct programming, we will impose subtype identity to NIL- programmed neurons by the activity of developmentally relevant signals or transcription factors. This novel strategy will generate neurons at a level of efficiency and precision compatible with clinical applications. Aim 3- To dissect the influence of the host tissue on ESC-derived neurons, we will test the cellular stability of NIL-programmed neurons after implantation into the spinal cord. These results will investigate if ESC-derived neurons change fate after interacting with the host tissue. Completing this proposal will impact not only future therapies for spinal cord injurie, but will also produce general principles to differentiate disease relevant cells at high efficiency These are necessary steps to accelerate the transition of ESC to clinical applications.
描述(由申请人提供):胚胎干细胞(ESC)将彻底改变医学研究和患者治疗。然而,有两个主要障碍不允许 ESC 疗法快速过渡到临床环境:1)缺乏排除在体内精确复制同质细胞群的方案; 2)ESC衍生细胞体内移植后命运稳定性的不确定性。克服这些限制将改善与 ESC 衍生细胞疗法相关的安全问题。我们的长期目标是有效生成能够功能性整合到器官中的 ESC 衍生细胞。我们最近开发了有效的方案来从 ESC 获得终末细胞命运。当在分化的 ESC 中表达时,Ngn2-Isl1-Lhx3(NIL 转录因子)和 Ngn2-Isl1-Phox2a(NIP 转录因子)足以分别编程脊髓或颅运动神经元身份。这种情况发生得非常快:48 小时内,超过 97% 的细胞获得了终末分化运动神经元的所有特征。此外,编程的神经元正确地整合到发育中的脊髓中,投射轴突反映了内源性神经元。尽管 NIL 和 NIP 因子不能提供精确肌肉神经支配所需的运动神经元亚型身份,但我们的初步数据表明,它可以通过发育相关信号的活动来获得。我们假设 NIL 和 NIP 因子通过快速转录序列编程“通用”运动神经元命运,并且亚型身份可以由遗传因素或移植后的宿主环境独立施加。在这里,我们提出 3 个目标来测试这些想法: 目标 1 - 为了了解直接细胞编程的分子机制,我们将绘制有效编程的 NIL 和 NIP 遗传和表观遗传要求。这些知识将有助于未来针对不同临床相关细胞类型的编程策略的设计。目标 2-为了提高直接编程的细胞精度,我们将通过发育相关信号或转录因子的活动将亚型同一性强加给 NIL 编程神经元。这种新颖的策略将以与临床应用兼容的效率和精度水平生成神经元。目标 3-为了剖析宿主组织对 ESC 衍生神经元的影响,我们将测试 NIL 编程神经元在植入脊髓后的细胞稳定性。这些结果将调查 ESC 衍生的神经元在与宿主组织相互作用后是否改变命运。完成该提案不仅将影响未来脊髓损伤的治疗,还将产生高效分化疾病相关细胞的一般原则。这些是加速 ESC 向临床应用过渡的必要步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esteban Orlando Mazzoni其他文献
Esteban Orlando Mazzoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esteban Orlando Mazzoni', 18)}}的其他基金
Synthetic HoxA to dissect transcriptional regulatory logic - TRFR
解析转录调控逻辑的合成 HoxA - TRFR
- 批准号:
10891949 - 财政年份:2021
- 资助金额:
$ 30.66万 - 项目类别:
Synthetic HoxA to dissect transcriptional regulatory logic
合成 HoxA 剖析转录调控逻辑
- 批准号:
10299066 - 财政年份:2021
- 资助金额:
$ 30.66万 - 项目类别:
Synthetic HoxA to dissect transcriptional regulatory logic
合成 HoxA 剖析转录调控逻辑
- 批准号:
10470924 - 财政年份:2021
- 资助金额:
$ 30.66万 - 项目类别:
A comparative inter-neuronal and inter-species platform to understand neuronal differential sensitivity to neurodegeneration
一个比较神经元间和物种间平台,以了解神经元对神经变性的差异敏感性
- 批准号:
10155389 - 财政年份:2020
- 资助金额:
$ 30.66万 - 项目类别:
Understanding CTCF boundaries controlling Hox gene expression
了解控制 Hox 基因表达的 CTCF 边界
- 批准号:
10362674 - 财政年份:2018
- 资助金额:
$ 30.66万 - 项目类别:
Understanding CTCF boundaries controlling Hox gene expression
了解控制 Hox 基因表达的 CTCF 边界
- 批准号:
10116495 - 财政年份:2018
- 资助金额:
$ 30.66万 - 项目类别:
Understanding CTCF boundaries controlling Hox gene expression
了解控制 Hox 基因表达的 CTCF 边界
- 批准号:
9886295 - 财政年份:2018
- 资助金额:
$ 30.66万 - 项目类别:
Molecular mechanisms of direct neuronal programming
直接神经元编程的分子机制
- 批准号:
8845575 - 财政年份:2014
- 资助金额:
$ 30.66万 - 项目类别:
Molecular mechanisms of direct neuronal programming
直接神经元编程的分子机制
- 批准号:
8674398 - 财政年份:2014
- 资助金额:
$ 30.66万 - 项目类别:
相似国自然基金
帕金森病轴突损伤中组蛋白乳酸化的作用及机制研究
- 批准号:82301604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
施旺细胞-神经元乳酸代谢稳态通过蛋白质乳酸化调控轴突再生的作用研究
- 批准号:32300648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
异丙酚促进STX3/PTEN介导DG-Glu能神经元轴突发生提高发育脑认知功能的机制研究
- 批准号:82301354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Mical3调控轴突起始段Tau蛋白弥散屏障重塑在慢性创伤性脑病中的作用及机制研究
- 批准号:82371381
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Stress Granule Formation in the Antiretroviral-Mediated Dysregulation of Oligodendrocyte Maturation in HIV-HAND
HIV-HAND 中抗逆转录病毒介导的少突胶质细胞成熟失调中的应激颗粒形成
- 批准号:
10762118 - 财政年份:2023
- 资助金额:
$ 30.66万 - 项目类别:
The role of the protocadherin gene cluster in neurodevelopment and the implications for neurodevelopmental disorders
原钙粘蛋白基因簇在神经发育中的作用及其对神经发育障碍的影响
- 批准号:
10808516 - 财政年份:2023
- 资助金额:
$ 30.66万 - 项目类别:
Regulation of Schwann Cell Mitochondria Homeostasis in Painful Peripheral Neuropathy
疼痛性周围神经病中雪旺细胞线粒体稳态的调节
- 批准号:
10790951 - 财政年份:2023
- 资助金额:
$ 30.66万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 30.66万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 30.66万 - 项目类别: