Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy
对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理
基本信息
- 批准号:10587221
- 负责人:
- 金额:$ 38.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAffectAppleArtificial IntelligenceAsianBlack raceBostonCOVID-19 pandemicCaliforniaCaringChemotherapy and/or radiationClinicalClinical DataClinical TrialsCommunity PracticeComplementComputer softwareDataData SourcesDevicesDiseaseEarly identificationEcosystemElectronic Health RecordEmergency department visitEnsureEquityEvaluationFutureGeographyGoalsHealthHealthcareHealthcare SystemsHospital DepartmentsHospitalizationHospitalsInformaticsInstitutionInterventionIsraelMachine LearningMalignant NeoplasmsMedical centerMedicareModelingMonitorNative AmericansNon-Small-Cell Lung CarcinomaOncologyOutcomeOutpatientsPatient CarePatientsPerformanceProceduresPublic HealthQuality of lifeRaceRadiation therapyRandomizedRandomized, Controlled TrialsResearchResourcesSan FranciscoSupportive careSystemSystemic TherapyTreatment outcomeUnderserved PopulationUnited StatesUnited States Centers for Medicare and Medicaid ServicesUniversitiesValidationWashingtonWorkacute carecancer carecancer therapychemoradiationchemotherapyclinical practicecohortcomorbiditycostdata harmonizationfitbithandheld mobile devicehealth care deliveryhealth care settingshealth datahealth equalityhigh riskimprovedmachine learning algorithmmachine learning modelmachine learning predictionmachine learning prediction algorithmmultimodalitypatient populationpersonalized predictionsportabilitypractice settingpredictive modelingprospectiverandomized, controlled studyremote health carerural Americanssocioeconomicssuccesssymptom managementsymptom treatmentsymptomatic improvementtoolwearable device
项目摘要
PROJECT ABSTRACT
An estimated 650,000 patients with cancer receive systemic therapy or radiation therapy (RT) annually in the
United States. Many of these patients undergoing outpatient cancer therapy will require acute care with an
emergency department visit or hospital admission due to symptoms from treatment, disease, or comorbidities.
This can impact cancer outcomes, patient treatment decisions, and costs to patients and the healthcare
system. While there has been much enthusiasm for artificial intelligence and machine learning (ML) to improve
healthcare delivery, high quality prospective data are lacking, especially across diverse clinical practice
settings.
We previously completed one of the first randomized controlled studies in healthcare ML, demonstrating that
ML based on EHR data can accurately generate personalized predictions and guide supportive interventions to
decrease acute care requirements and costs in patients undergoing RT and chemoradiotherapy (CRT)
(NCT04277650). We have also developed a ML model for predicting hospitalizations based on prospective
clinical trials of daily step counts collected in patients undergoing CRT. The research objective of this
application is to leverage a geographically, racially, socioeconomically, and technically diverse network of
healthcare settings and patients to assess and maximize how accurately and equitably these approaches
generalize. Our team includes the University of California, San Francisco (UCSF), Duke University, Beth Israel
Deaconess Medical Center, Essentia Health in Duluth, MN and Ashland, WI, Washington Hospital in Fremont,
CA, Duke Regional Hospital in Durham, NC, and Duke Raleigh Hospital in Raleigh, NC. Specifically, we seek
to: (1) prospectively evaluate the validity of an EHR-based acute care prediction ML algorithm across our
network and establish a framework for equity, generalizability, and portability and (2) validate our existing
patient-generated health data (PGHD; step count) models that predict hospitalization during CRT at a second
institution and integrate with our EHR-based ML algorithm to enhance prediction of acute care needs. We
hypothesize that our approaches will be accurate across institutions though require adjustments for both
generalizability and fairness, and that EHR- and PGHD-based approaches will offer complementary predictive
performance.
The long-term goal is to develop informatics-based tools that can be broadly and equitably deployed to
improve the delivery of cancer care and subsequent treatment outcomes. This research will generate data
regarding the generalizability and fairness of EHR- and PGHD-based approaches and a platform for a future
multi-institutional randomized controlled trial.
项目摘要
据估计,每年有 650,000 名癌症患者接受全身治疗或放射治疗 (RT)
美国。许多接受门诊癌症治疗的患者需要紧急护理
因治疗、疾病或合并症的症状而去急诊室就诊或入院。
这可能会影响癌症结果、患者治疗决策以及患者和医疗保健的成本
系统。尽管人们对人工智能和机器学习 (ML) 的改进抱有很大热情
医疗保健服务缺乏高质量的前瞻性数据,尤其是在不同的临床实践中
设置。
我们之前完成了医疗保健机器学习领域的首批随机对照研究之一,表明
基于 EHR 数据的机器学习可以准确生成个性化预测并指导支持性干预措施
减少接受放疗和放化疗 (CRT) 的患者的急性护理需求和费用
(NCT04277650)。我们还开发了一个 ML 模型,用于根据前瞻性预测住院情况
收集接受 CRT 的患者每日步数的临床试验。本次研究的目的
应用程序是利用地理、种族、社会经济和技术多样化的网络
医疗机构和患者评估并最大限度地提高这些方法的准确性和公平性
概括。我们的团队包括加州大学旧金山分校 (UCSF)、杜克大学、贝斯以色列大学
Deaconess 医疗中心、明尼苏达州德卢斯和威斯康星州阿什兰的 Essentia Health、弗里蒙特的华盛顿医院
加利福尼亚州、北卡罗来纳州达勒姆的杜克地区医院和北卡罗来纳州罗利的杜克罗利医院。具体来说,我们寻求
目的:(1) 前瞻性地评估基于 EHR 的急性护理预测 ML 算法在整个研究中心的有效性
网络并建立公平性、普遍性和可移植性的框架,以及(2)验证我们现有的
患者生成的健康数据(PGHD;步数)模型可在 CRT 期间预测住院情况
机构并与我们基于 EHR 的 ML 算法集成,以增强对急症护理需求的预测。我们
假设我们的方法在各个机构中都是准确的,尽管需要对两者进行调整
普遍性和公平性,基于 EHR 和 PGHD 的方法将提供互补的预测
表现。
长期目标是开发基于信息学的工具,可以广泛、公平地部署到
改善癌症护理的提供和后续治疗结果。这项研究将产生数据
关于基于 EHR 和 PGHD 的方法的普遍性和公平性以及未来的平台
多机构随机对照试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Clint Hong其他文献
Julian Clint Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
COVID-19 Pandemic-related Changes in the Child Tax Credit and Effects on Behavioral Health for Medicaid-enrolled Adolescents
与 COVID-19 大流行相关的儿童税收抵免变化及其对参加医疗补助的青少年行为健康的影响
- 批准号:
10686628 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Implicit racial bias in pediatric emergency medicine: A foundational investigation of physician behaviors
儿科急诊医学中的隐性种族偏见:对医生行为的基础调查
- 批准号:
10722681 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别: