Understanding the robustness of cell cycles
了解细胞周期的稳健性
基本信息
- 批准号:10587456
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultArchitectureBacteriaBiochemicalBiological PacemakersBiological ProcessBiologyCell CycleCell NucleusCell divisionCell physiologyCell-Free SystemCellsCircadian RhythmsComparative StudyComplexCytoplasmDefectDevelopmentDevelopmental BiologyDevelopmental ProcessDevicesDisciplineDiseaseEcosystemEmbryoEncapsulatedEnvironmentFeedbackGeneticGoalsHumanImageImpairmentKnowledgeLinkMalignant NeoplasmsMicrofluidicsMitoticMitotic Cell CycleModelingModificationMolecularMusNeuronsOrganismPatternPerformancePeriodicityPhysiologyPositioning AttributeProcessPropertyReactionRecording of previous eventsRegulationResearchRoleShapesSignal PathwaySleeplessnessStructureSystemSystems BiologyTrainingZebrafishcomputer studiesdesignenvironmental changeexperimental studyimprovedinnovationinsightinterestrational designreconstitutionresilienceresponsesimulationsomitogenesissynthetic biologytheories
项目摘要
Project Summary
Biological oscillators are essential to a variety of cyclic processes in cells and development. These include cell
divisions, heartbeats, and somitogenesis. Impaired biological oscillators may cause diseases from insomnia to
cancer. It is thus crucial for an oscillator to develop the ability to maintain a stable function against the changes
in environmental conditions. The architecture of many oscillators is highly conserved among species, despite
that the actual molecules may vary from species to species. This highlights the important role of network topology
in the functions of biological oscillators. How the network structure is linked to the certain functions of biological
oscillators is still an open challenging question in systems and synthetic biology. The goal of this proposal is to
identify the fundamental principles underlying the robust functioning of clock networks. To achieve the goal, a
systematic computational approach will be applied to analyze all topological modifications that significantly
impact the robustness and tunability of clock networks. As a comparison to computational studies, this proposal
will experimentally investigate the possible mechanisms by which cell cycles retain robust oscillations. The
proposed experiments make use of a droplet-based microfluidic system, where cell-free extracts are
encapsulated in droplets to mimic single cells that undergo mitotic cycles. This artificial cell system will be
integrated with live embryo imaging and stochastic modeling, to track and analyze many single oscillators
simultaneously, and thereby quantify the robustness of the mitotic cycles to environmental changes and
molecular stochasticity. To study the role of network structure in the robustness of the clock, results from intact
oscillators will be compared with the ones whose sub-networks are compromised. The results from the mitotic
clock may apply to a broad set of other clocks that share similar topological cores. The results should also provide
valuable insights on how to design a robust synthetic clock.
项目概要
生物振荡器对于细胞和发育的各种循环过程至关重要。这些包括细胞
分裂、心跳和体节发生。生物振荡器受损可能导致失眠等疾病
癌症。因此,对于振荡器来说,发展针对变化保持稳定功能的能力至关重要
在环境条件下。许多振荡器的结构在物种之间是高度保守的,尽管
实际分子可能因物种而异。这凸显了网络拓扑的重要作用
生物振荡器的功能。网络结构如何与生物的某些功能联系起来
振荡器仍然是系统和合成生物学中一个开放的具有挑战性的问题。该提案的目标是
确定时钟网络稳健运行的基本原理。为了实现这一目标,一个
将应用系统的计算方法来分析所有显着的拓扑变化
影响时钟网络的鲁棒性和可调谐性。作为与计算研究的比较,该提案
将通过实验研究细胞周期保持强劲振荡的可能机制。这
拟议的实验利用基于液滴的微流体系统,其中无细胞提取物
封装在液滴中以模拟经历有丝分裂周期的单细胞。该人造细胞系统将
与活体胚胎成像和随机建模相结合,跟踪和分析许多单个振荡器
同时,从而量化有丝分裂周期对环境变化的鲁棒性和
分子随机性。研究网络结构在时钟鲁棒性中的作用,结果来自完整的
振荡器将与其子网络受到损害的振荡器进行比较。有丝分裂的结果
时钟可以适用于共享相似拓扑核心的广泛其他时钟。结果还应提供
关于如何设计强大的合成时钟的宝贵见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiong Yang其他文献
Qiong Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of A Novel Nanoparticle Biosensor for Rapid, Point-of-Care Sepsis Diagnosis and Risk Assessment
开发新型纳米颗粒生物传感器,用于快速护理点脓毒症诊断和风险评估
- 批准号:
10602155 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Diversity Supplement for Angiogenic and anti-microbial supports for pulp regeneration
用于牙髓再生的血管生成和抗微生物支持的多样性补充剂
- 批准号:
10889680 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Biofilm Spatial Structure in the Transition from Health to Periodontal Disease
从健康向牙周病转变的生物膜空间结构
- 批准号:
10674685 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Angiogenic and anti-microbial supports for pulp regeneration
用于牙髓再生的血管生成和抗菌支持
- 批准号:
10578730 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Folic Acid Supplementation and Colitis-associated Colon Carcinogenesis
叶酸补充剂和结肠炎相关的结肠癌发生
- 批准号:
10446361 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别: